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Problem - Secure Data Analytics on Cloud
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» We want to utilize cloud environment for data analytics
» Service provider can observe the data

» Problematic for sensitive data (e.g., medical, financial data)
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Problem - Secure Data Analytics on Cloud
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» We outsource encrypted sensitive data

» However, encrypted data is difficult to analyze
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Problem - Secure Data Analytics - Approaches

Homomorphic Encryption Trusted Hardware
» Theoretically robust and » Cost effective
provides highest level of

» Provides reasonable security

» Intel SGX is available in all
new processors

security
» High computational cost

» Impractical for large data
processing

» Needs careful consideration
of side channel attacks
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Objective of the work

Create a data analytics platform utilizing trusted
processor, which is - secure, practical, general
purpose, and scalable.
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State of the Art

ObliVM (Liu et al., 2015)
» Provides a language and covert the logic into circuit
» Difficult to perform analysis on large data set
Oblivious Multi-party ML (Ohrimenko et al., 2016)
» Performs important machine learning algorithms using SGX
» Specific for set of algorithms
Opaque (Zheng et al., 2017)

» Oblivious and encrypted distributed analytics platform using
Apache Spark and Intel SGX (mainly focused on supporting
SQL)
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Background - Intel SGX

v

SGX stands for Software Guard Extensions
» SGX is new Intel instruction set

» Allows us to create secure compartment inside processor,
called Enclave

v

Privileged softwares, such as, OS, Hypervisor, can't directly
observe data and computation inside enclave
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Background - Intel SGX - Attack Surface

» SGX essentially reduce the attack surface to processor and
enclave code
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Attack surface of traditional
computation system
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Background - Intel SGX - Attack Surface

» SGX essentially reduce the attack surface to processor and
enclave code
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Attack surface of traditional

computation system Attack surface with SGX
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Background - Intel SGX Application

Application
Untrusted Part Trusted Part
of App of App
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Priviledged System Code
Operating System, Hypervisor, BIOS, etc.

» We only trust the processor and the code inside the
enclave (Intel, 2015)
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Background - Intel SGX Impact
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of SGX Server

» We can outsource computation securely

» No need to trust the cloud provider (i.e. Hypervisor, OS,
Cloud administrators)
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Threat Model
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» Adversary can control OS (i.e. memory, disk, networking)
» Adversary can not temper with enclave code

» Adversary can not observe CPU register content
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Challenges - Obliviousness

Challenge: Access Pattern Leakage
» SGX uses system memory, which is controlled by the adversary
» Adversary can observe memory accesses

» Memory access reveals a lot about the data (Islam, Kuzu, and
Kantarcioglu, 2012; Naveed, Kamara, and Wright, 2015)
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Challenges - Obliviousness

Challenge: Access Pattern Leakage
» SGX uses system memory, which is controlled by the adversary
» Adversary can observe memory accesses

» Memory access reveals a lot about the data (Islam, Kuzu, and
Kantarcioglu, 2012; Naveed, Kamara, and Wright, 2015)
Solution

» To reduce information leakage we ensure Data Obliviousness
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Data Obliviousness - Example

» Program executes same path for all input of same size
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Data Obliviousness - Example

» Program executes same path for all input of same size

Example: Non-Oblivious swap method of Bitonic sort

if (dir == (arr[i] > arr[jl)) {
int h = arr[i];
arr [i] = arr[j];
arr[j] = h;

}
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Data Obliviousness - Example (Cont.)

Example: Oblivious swap method of Bitonic sort

int
int

X =

y

_asm{

mov
mov
mov

cmp

eax
ebx
ecx

ebx

setg dl

b

xor edx,
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arr[i];
arr[j];

dir

eax

ecXx

mov eax, X
mov ecx, Yy

mov ebx,
mov edx, X

<

cmovz eax, ecx
cmovz ebx, edx

mov [x], eax
mov [y]l, ebx

3



Data Obliviousness - Challenges

Challenge
» Building data obliviousness solution is non-trivial

» Requires a lot of time and effort
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Data Obliviousness - Challenges

Challenge
» Building data obliviousness solution is non-trivial
» Requires a lot of time and effort

Solution

» We provide our own python (NumPy, Pandas) inspired
language that ensures data obliviousness
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Data Oblivious - Vectorization

» We removed if and emphasis on vectorization

Example: Compute average income of people with age >= 50

sum = 0, count = 0
for i = 0 to Person.length:
if Person.age >= 50:
count ++
sum += P.income
print sum / count
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Data Oblivious - Example

Example: Compute average income of people with age >= 50

S = where(Person, "Person[‘age’] >= 50")
print (S .* Person[‘income’] ) / sum(S)
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Challenge - Memory constraint

Challenge

» Current version of SGX (v1) allows only 90MB of memory
allocation
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Challenge - Memory constraint

Challenge

» Current version of SGX (v1) allows only 90MB of memory
allocation

Solution

» We build flexible data blocking mechanism with efficient
and secure caching

» We build matrix manipulation library that supports blocking
and we call the abstraction BigMatrix
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Security Properties - Summary

» Individual operations in our system is data oblivious
» Combination of oblivious operations is also oblivious
» Compiler warns user about potential leakage

We perform optimization based on publicly known
information, e.g. data size

v
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System Overview - SGX BigMatrix

Untrusted Trusted

Execution| Block
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SGX BigMatrix
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BigMatrix Library

Untrusted Trusted

Execution| Block

... [Block Size : Ecalls 1| Engine Cache
! E OCalls BigMatrix Library
{[ BMRT Client - Service Manager | ;

ek j i| Intel SGX SDK

Client Server

SGX BigMatrix - BigMatrix Library
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BigMatrix Library

Operations in BigMatrix Library
» Data access operations - load, publish, get_row, etc.

» Matrix Operations - inverse, multiply, element wise,
transpose, etc.

» Relational Algebra Operations - where, sort, join, etc.
» Data generation operations - rand, zeros, etc.

» Statistical Operations - norm, var
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BigMatrix Library - Security Properties

>

All the operations are data oblivious

v

All the operations supports blocking

v

We proved that combination of data oblivious operations is
also data oblivious (in Section 4)

v

Data oblivious and blocking aware implementation details in
Appendix A

FEARLESS engineering



BigMatrix Library - Trace

» Each operation has fixed trace

» Trace is the information disclosed to adversary during
execution

» For example: operation type, input and output data size
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BigMatrix Library - Trace

» Each operation has fixed trace

» Trace is the information disclosed to adversary during
execution

» For example: operation type, input and output data size

Example: Trace of Matrix Multiplication C = Ax B
» Instruction type (i.e. multiplication)
» Input Matrices size (i.e., A.rows, A.cols, B.rows, B.cols)
» Output Matrix size (i.e., C.rows, C.cols)

Block size

v

Oblivious memory read and write sequences, which does not
depend on data content

v
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Exec. Engine & Block Cache

Untrusted Trusted
; | | Execution|| Block
S .1 |Block Size|f; ecans f7| Engine Cache
Compiler || 5y timizer
Ocalls J BigMatrix Library

w [ BMRT Client @ | Service Manager | 7
ek j i| Intel SGX SDK

Server

Client

SGX BigMatrix - Execution Engine and Block Cache
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Exec. Engine & Block Cache

Execution Engine
» Execute BigMatrix library operations

» Parse instruction in the form of

Var ASSIGN Operation (Var, Var, ...)

v

Process sequence of instructions
» Maintain intermediate states required to execute complex
program, such as, variable to BigMatrix assignments
Block Cache

» Help with the decision when to remove a block from memory
based on next sequence of instructions
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Exec. Engine & Block Cache - Security Properties

» Execution Engine and Block Cache is also data oblivious
given the input program is data oblivious

» Compiler warns about potential data leakage

» Adversary can not infer anything more about data, apart from
the trace of all the operations
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Compiler

Untrusted Trusted

Execution| Block

e ——— - IBlock Sizel } ecas 1| Engine | Cache ||
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3 j {| Intel SGXSDK | |
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SGX BigMatrix - Compiler
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Compiler

» Compiles our python inspired language into basic command
» It ensures data obliviousness by removing support for if

» We emphasis on operation vectorization

Input: Linear Regression

x = load('path/to/X_Matrix ")

y = load(‘path/to/Y_Matrix ")

xt = transpose(x)

theta = inverse(xt % x) % xt %y
publish(theta)
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Compiler - Output

Output: Linear Regression

x = load (X_Matrix_1D)
y = load(Y_Matrix_ID)
xt = transpose(x)

tl = multiply (xt, x)
unset(x)

t2 = inverse(tl)
unset(tl)

t3 = multiply (t2, xt)
unset (xt)

unset (t2)

theta = multiply (t3, y)
unset(y)

unset (t3)
publish(theta)
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Compiler - Track data leakage

» We report against accidental data leakage through trace
» We check if any sensitive data is used in trace of any operation

» In our system, sensitive data - content of any BigMatrix,
content of intermediate variables

Example
X = load(‘path/to/X_Matrix ‘)
s = count (where(X[1] >= 0))
Y = zeros(s, 1)

publish(Y)

We report that zeros operation revealing sensitive data s
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SQL Support

» We also support basic SQL
Input

I = sql(‘SELECT x*

FROM person p

JOIN person_income pi (1)
ON p.id = pi.id

WHERE p.age > 50

AND pi.income > 1000007)
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SQL Support (Cont.)

Output

tl = where(person, ’C:3;V:50;0:=")
# person.age is in column 3
t2 = zeros(person.rows, 2)
set_column (t2, 0, t3)
t3 = get_column(person, 0)
# person.id is in column O
set_column(t2, 1, t1)
t4 where (person_income, ’C:1;V:100000;0:=")
t5 zeros (person_income.rows, 2)
set_column(t5, 0, t6)
t6

get_column(person_income, 0)
# person_income.id is in column O
set_column (t5, 1, t4)
A = join(t3, tb, ’c:t1.0;c:t2.0;0:=", 1)
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Block Size Optimizer

Untrusted Trusted
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SGX BigMatrix - Block Size Optimizer
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Block Size Optimizer - Intro & Design Decisions

» We observed that input block size has impact on
performances of the system

» Adversary doesn’t gain any knowledge about data based on
block size

» So, we find optimum block size for each instruction before
executing a program

» We explicitly do not want to perform optimization inside
enclave because
» Optimization libraries are large and complex, which can
introduce unintended security flaws
» Any efficient optimization algorithm will reveal information
about data
» So we only perform optimization on trace data, nothing else

FEARLESS engineering



Block Size Optimizer - Overview

» We generate DAG of execution graph

» Internal nodes represent operations
» Edges represent block conversions

v

We know cost for each operation for different matrix and
block size

» Given input matrix sizes we can find optimized block size

» We can convert one block configuration to another and know
the cost of conversion
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Block Size Optimizer - Example - Linear Regression

(brx.bex brx,bex)

(bry, bey)
Transpose

(JI'L s Jl?u)

(22, 13

(z2,25)

(210, 711)

(z8,211) (714, 215)
(212, 713)

» Execution graph (DAG) of © = (XTX)71XTY in liner
regression training phase
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Block Size Optimizer - Example - LR Cost Function

Cost = Convert(X, (brx, bcx), (xo, 1))
+ OP_Cost('Transpose’, X, (xg, 1))
+ Convert(XT, (x1, x0), (z9, 3))
+ Convert(X, (brx,bcx), (x4, 5))
+ OP_Cost(' Multiply', [XT, X], [(x2, x3), (24, 5)])
+ ...

We convert this into integer programming and solve it for all the
T, variables.
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Experimental Evaluations

We implemented a prototype using Intel SGX SDK and observe
performance of different operations

Setup
» Processor Intel Core i7 6700
» Memory 64GB
» OS Windows 7
» SGX SDK Version 1.0
Number of Machine 1

v
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Performance Impact - Matrix Size
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Performance Impact - Matrix Size - Summary

>

We observe similar trends for all matrix operations

v

We observe minimal overhead for encrypted computation

v

However, the overhead depends on operation type

» More experimental evaluations in Section 5
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Performance Impact - Block Size
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Performance Impact - Block Size - Summary

» We observe execution time increases with block size

» Also, very small block size increases execution time, due to
blocking overhead

» As a result, we performed optimization
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Comparison with ObliVM

» We compare performance of SGX-BigMatrix with ObliVM for
two-party matrix multiplication

» We observe that SGX-BigMatrix is magnitude faster because
we are utilizing hardware and do not require expensive over
the network communication

Matrix OblivM BigMatrix | BigMatrix
Dimension SGX Enc. | SGX Unenc.
100 28s 660ms 10ms 10ms
250 7m Os 90ms 93ms 88ms
500 53m 48s 910ms 706.66ms 675.66ms
750 2h 59m 40s 990ms | 2s 310ms 2s 260ms
1,000 6h 34m 17s 900ms | 10s 450ms | 10s 330ms

Table: Two-party matrix multiplication time in ObliVM vs BigMatrix
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Case Studies - Page Rank

» Performed Page Rank on three popular datasets

» Each dataset contains directed graph

Data Set Nodes | BigMatrix Encrypted

Wiki-Vote 7,115 97s 560ms
Astro-Physics | 18,772 6m 41s 200ms
Enron Email | 36,692 23m 19s 700ms

Table: Page Rank on real datasets
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Conclusion

v

We propose a practical data analytics framework with SGX

v

We present BigMatrix abstraction to handle large matrices in
constrained environment

» We proposed a programming abstraction for secure data
analytics

>
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We applied our system to solve real world problems




Thank You

Questions / Comments

Fahad Shaon - fahad.shaon@utdallas.edu

Murat Kantarcioglu - muratk@utdallas.edu

v

v

v

Zhigiang Lin - zhiqiang.lin@utdallas.edu
Latifur Khan - 1khan@utdallas.edu

v
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