UT DALLAS Erik Jonsson School of Engineering & Computer Science

SGX BigMatrix

A Practical Encrypted Data Analytic Framework with Trusted
Processors

Fahad Shaon Murat Kantarcioglu Zhigiang Lin
Latifur Khan

The University of Texas at Dallas

FEARLESS engineering

Problem - Secure Data Analytics on Cloud

H
_—
Code & Data >
- ——
Result [

» We want to utilize cloud environment for data analytics
» Service provider can observe the data

» Problematic for sensitive data (e.g., medical, financial data)

FEARLESS engineering

Problem - Secure Data Analytics on Cloud

\jﬁj

o]

Encrypted Code & Data) —
3 o]
Encrypted Result —

» We outsource encrypted sensitive data

» However, encrypted data is difficult to analyze

FEARLESS engineering

Problem - Secure Data Analytics - Approaches

Homomorphic Encryption Trusted Hardware
» Theoretically robust and » Cost effective
provides highest level of

» Provides reasonable security

» Intel SGX is available in all
new processors

security
» High computational cost

» Impractical for large data
processing

» Needs careful consideration
of side channel attacks

FEARLESS engineering

Objective of the work

Create a data analytics platform utilizing trusted
processor, which is - secure, practical, general
purpose, and scalable.

FEARLESS engineering

State of the Art

ObliVM (Liu et al., 2015)
» Provides a language and covert the logic into circuit
» Difficult to perform analysis on large data set
Oblivious Multi-party ML (Ohrimenko et al., 2016)
» Performs important machine learning algorithms using SGX
» Specific for set of algorithms
Opaque (Zheng et al., 2017)

» Oblivious and encrypted distributed analytics platform using
Apache Spark and Intel SGX (mainly focused on supporting
SQL)

FEARLESS engineering

Background - Intel SGX

v

SGX stands for Software Guard Extensions
» SGX is new Intel instruction set

» Allows us to create secure compartment inside processor,
called Enclave

v

Privileged softwares, such as, OS, Hypervisor, can't directly
observe data and computation inside enclave

FEARLESS engineering

Background - Intel SGX - Attack Surface

» SGX essentially reduce the attack surface to processor and
enclave code

\ App \ App \ App

] 0s

VMM

’.
=

Hardware

Attack Surface E::j

Attack surface of traditional
computation system

FEARLESS engineering

Background - Intel SGX - Attack Surface

» SGX essentially reduce the attack surface to processor and
enclave code

| App || App |{| App | Apry | APy | APp
0S		0s
VMM	VMM	
L Hardware	Hardware	

Attack Surface E::j

Attack Surface | H

Attack surface of traditional

computation system Attack surface with SGX

FEARLESS engineering

Background - Intel SGX Application

Application
Untrusted Part Trusted Part
of App of App
e Call Gate

Create Enclave /
1
|

Call Tms}ed Func.
| T
|

S

1 |
Priviledged System Code
Operating System, Hypervisor, BIOS, etc.

» We only trust the processor and the code inside the
enclave (Intel, 2015)

FEARLESS engineering

Background - Intel SGX Impact

i{?
Encrypted Code & Data
o]
Encrypted Result —

of SGX Server

» We can outsource computation securely

» No need to trust the cloud provider (i.e. Hypervisor, OS,
Cloud administrators)

FEARLESS engineering

Threat Model

=Cy

4 CodeT& Data Enclave
>
< Memory Processor
Result
o | 2 E
Disk
Server

» Adversary can control OS (i.e. memory, disk, networking)
» Adversary can not temper with enclave code

» Adversary can not observe CPU register content

FEARLESS engineering 11/49

Challenges - Obliviousness

Challenge: Access Pattern Leakage
» SGX uses system memory, which is controlled by the adversary
» Adversary can observe memory accesses

» Memory access reveals a lot about the data (Islam, Kuzu, and
Kantarcioglu, 2012; Naveed, Kamara, and Wright, 2015)

FEARLESS engineering

Challenges - Obliviousness

Challenge: Access Pattern Leakage
» SGX uses system memory, which is controlled by the adversary
» Adversary can observe memory accesses

» Memory access reveals a lot about the data (Islam, Kuzu, and
Kantarcioglu, 2012; Naveed, Kamara, and Wright, 2015)
Solution

» To reduce information leakage we ensure Data Obliviousness

FEARLESS engineering

Data Obliviousness - Example

» Program executes same path for all input of same size

FEARLESS engineering

Data Obliviousness - Example

» Program executes same path for all input of same size

Example: Non-Oblivious swap method of Bitonic sort

if (dir == (arr[i] > arr[jl)) {
int h = arr[i];
arr [i] = arr[j];
arr[j] = h;

}

FEARLESS engineering

Data Obliviousness - Example (Cont.)

Example: Oblivious swap method of Bitonic sort

int
int

X =

y

_asm{

mov
mov
mov

cmp

eax
ebx
ecx

ebx

setg dl

b

xor edx,

FEARLESS engineering

arr[i];
arr[j];

dir

eax

ecXx

mov eax, X
mov ecx, Yy

mov ebx,
mov edx, X

<

cmovz eax, ecx
cmovz ebx, edx

mov [x], eax
mov [y]l, ebx

3

Data Obliviousness - Challenges

Challenge
» Building data obliviousness solution is non-trivial

» Requires a lot of time and effort

FEARLESS engineering

Data Obliviousness - Challenges

Challenge
» Building data obliviousness solution is non-trivial
» Requires a lot of time and effort

Solution

» We provide our own python (NumPy, Pandas) inspired
language that ensures data obliviousness

FEARLESS engineering

Data Oblivious - Vectorization

» We removed if and emphasis on vectorization

Example: Compute average income of people with age >= 50

sum = 0, count = 0
for i = 0 to Person.length:
if Person.age >= 50:
count ++
sum += P.income
print sum / count

FEARLESS engineering

Data Oblivious - Example

Example: Compute average income of people with age >= 50

S = where(Person, "Person[‘age’] >= 50")
print (S .* Person[‘income’]) / sum(S)

FEARLESS engineering

Challenge - Memory constraint

Challenge

» Current version of SGX (v1) allows only 90MB of memory
allocation

FEARLESS engineering

Challenge - Memory constraint

Challenge

» Current version of SGX (v1) allows only 90MB of memory
allocation

Solution

» We build flexible data blocking mechanism with efficient
and secure caching

» We build matrix manipulation library that supports blocking
and we call the abstraction BigMatrix

FEARLESS engineering

Security Properties - Summary

» Individual operations in our system is data oblivious
» Combination of oblivious operations is also oblivious
» Compiler warns user about potential leakage

We perform optimization based on publicly known
information, e.g. data size

v

FEARLESS engineering

System Overview - SGX BigMatrix

Untrusted Trusted

Execution| Block

.. |Block Size|fy ecans 1| Engine Cache ;
I @ OCalls BigMatrix Library | |
{| BMRT Client - | Service Manager g ; |
ek j {| Intel SGXSDK |

=

Client Server

SGX BigMatrix

FEARLESS engineering

BigMatrix Library

Untrusted Trusted

Execution| Block

... [Block Size : Ecalls 1| Engine Cache
! E OCalls BigMatrix Library
{[BMRT Client - Service Manager | ;

ek j i| Intel SGX SDK

Client Server

SGX BigMatrix - BigMatrix Library

FEARLESS engineering 21/49

BigMatrix Library

Operations in BigMatrix Library
» Data access operations - load, publish, get_row, etc.

» Matrix Operations - inverse, multiply, element wise,
transpose, etc.

» Relational Algebra Operations - where, sort, join, etc.
» Data generation operations - rand, zeros, etc.

» Statistical Operations - norm, var

FEARLESS engineering

BigMatrix Library - Security Properties

>

All the operations are data oblivious

v

All the operations supports blocking

v

We proved that combination of data oblivious operations is
also data oblivious (in Section 4)

v

Data oblivious and blocking aware implementation details in
Appendix A

FEARLESS engineering

BigMatrix Library - Trace

» Each operation has fixed trace

» Trace is the information disclosed to adversary during
execution

» For example: operation type, input and output data size

FEARLESS engineering

BigMatrix Library - Trace

» Each operation has fixed trace

» Trace is the information disclosed to adversary during
execution

» For example: operation type, input and output data size

Example: Trace of Matrix Multiplication C = Ax B
» Instruction type (i.e. multiplication)
» Input Matrices size (i.e., A.rows, A.cols, B.rows, B.cols)
» Output Matrix size (i.e., C.rows, C.cols)

Block size

v

Oblivious memory read and write sequences, which does not
depend on data content

v

FEARLESS engineering

Exec. Engine & Block Cache

Untrusted Trusted
; | | Execution|| Block
S .1 |Block Size|f; ecans f7| Engine Cache
Compiler || 5y timizer
Ocalls J BigMatrix Library

w [BMRT Client @ | Service Manager | 7
ek j i| Intel SGX SDK

Server

Client

SGX BigMatrix - Execution Engine and Block Cache

FEARLESS engineering 25/49

Exec. Engine & Block Cache

Execution Engine
» Execute BigMatrix library operations

» Parse instruction in the form of

Var ASSIGN Operation (Var, Var, ...)

v

Process sequence of instructions
» Maintain intermediate states required to execute complex
program, such as, variable to BigMatrix assignments
Block Cache

» Help with the decision when to remove a block from memory
based on next sequence of instructions

FEARLESS engineering

Exec. Engine & Block Cache - Security Properties

» Execution Engine and Block Cache is also data oblivious
given the input program is data oblivious

» Compiler warns about potential data leakage

» Adversary can not infer anything more about data, apart from
the trace of all the operations

FEARLESS engineering

Compiler

Untrusted Trusted

Execution| Block

e ——— - IBlock Sizel } ecas 1| Engine | Cache ||
1 _ OCalls BigMatrix Library | |
[BMRT Cliem J¢——— Service Manager |7 |
3 j {| Intel SGXSDK | |

[t G 3

Client Server

SGX BigMatrix - Compiler

FEARLESS engineering

Compiler

» Compiles our python inspired language into basic command
» It ensures data obliviousness by removing support for if

» We emphasis on operation vectorization

Input: Linear Regression

x = load('path/to/X_Matrix ")

y = load(‘path/to/Y_Matrix ")

xt = transpose(x)

theta = inverse(xt % x) % xt %y
publish(theta)

FEARLESS engineering

Compiler - Output

Output: Linear Regression

x = load (X_Matrix_1D)
y = load(Y_Matrix_ID)
xt = transpose(x)

tl = multiply (xt, x)
unset(x)

t2 = inverse(tl)
unset(tl)

t3 = multiply (t2, xt)
unset (xt)

unset (t2)

theta = multiply (t3, y)
unset(y)

unset (t3)
publish(theta)

FEARLESS engineering

Compiler - Track data leakage

» We report against accidental data leakage through trace
» We check if any sensitive data is used in trace of any operation

» In our system, sensitive data - content of any BigMatrix,
content of intermediate variables

Example
X = load(‘path/to/X_Matrix ‘)
s = count (where(X[1] >= 0))
Y = zeros(s, 1)

publish(Y)

We report that zeros operation revealing sensitive data s

FEARLESS engineering

SQL Support

» We also support basic SQL
Input

I = sql(‘SELECT x*

FROM person p

JOIN person_income pi (1)
ON p.id = pi.id

WHERE p.age > 50

AND pi.income > 1000007)

FEARLESS engineering

SQL Support (Cont.)

Output

tl = where(person, ’C:3;V:50;0:=")
person.age is in column 3
t2 = zeros(person.rows, 2)
set_column (t2, 0, t3)
t3 = get_column(person, 0)
person.id is in column O
set_column(t2, 1, t1)
t4 where (person_income, ’C:1;V:100000;0:=")
t5 zeros (person_income.rows, 2)
set_column(t5, 0, t6)
t6

get_column(person_income, 0)
person_income.id is in column O
set_column (t5, 1, t4)
A = join(t3, tb, ’c:t1.0;c:t2.0;0:=", 1)

FEARLESS engineering 33/49

Block Size Optimizer

Untrusted Trusted

7 | Execution| Block

. . Block Sizefl"1 ecaiis 1| Engine Cache ;
w | @ [OCalls BigMatrix Library | |

Service Manager

{[BMRT Client s s s
[—— i Intel SGX SDK

Client Server

SGX BigMatrix - Block Size Optimizer

FEARLESS engineering 34 /49

Block Size Optimizer - Intro & Design Decisions

» We observed that input block size has impact on
performances of the system

» Adversary doesn’t gain any knowledge about data based on
block size

» So, we find optimum block size for each instruction before
executing a program

» We explicitly do not want to perform optimization inside
enclave because
» Optimization libraries are large and complex, which can
introduce unintended security flaws
» Any efficient optimization algorithm will reveal information
about data
» So we only perform optimization on trace data, nothing else

FEARLESS engineering

Block Size Optimizer - Overview

» We generate DAG of execution graph

» Internal nodes represent operations
» Edges represent block conversions

v

We know cost for each operation for different matrix and
block size

» Given input matrix sizes we can find optimized block size

» We can convert one block configuration to another and know
the cost of conversion

FEARLESS engineering

Block Size Optimizer - Example - Linear Regression

(brx.bex brx,bex)

(bry, bey)
Transpose

(JI'L s Jl?u)

(22, 13

(z2,25)

(210, 711)

(z8,211) (714, 215)
(212, 713)

» Execution graph (DAG) of © = (XTX)71XTY in liner
regression training phase

FEARLESS engineering

Block Size Optimizer - Example - LR Cost Function

Cost = Convert(X, (brx, bcx), (xo, 1))
+ OP_Cost('Transpose’, X, (xg, 1))
+ Convert(XT, (x1, x0), (z9, 3))
+ Convert(X, (brx,bcx), (x4, 5))
+ OP_Cost(' Multiply', [XT, X], [(x2, x3), (24, 5)])
+ ...

We convert this into integer programming and solve it for all the
T, variables.

FEARLESS engineering

Experimental Evaluations

We implemented a prototype using Intel SGX SDK and observe
performance of different operations

Setup
» Processor Intel Core i7 6700
» Memory 64GB
» OS Windows 7
» SGX SDK Version 1.0
Number of Machine 1

v

FEARLESS engineering

Performance Impact - Matrix Size

Unencrypted —&—

/g Encrypted Unencrypted —&—
- 1.4x10° T T T T Encrypted —8—
£ 12x10° 550000 —
E 1x10° 500000
S 800000 Z :(S)gggg
.8 R=3
T o000 2 350000
E 400000 2 300000
% 200000 S 250000
E 0 200000 |
= NI R I RN 150000
xd NF X ot & @Q
N o @“ @Q @“ @Q
N S N\
Matrix Elements QQQQ@ QQQ q,@ S P
Matrix Elements
Matrix Multiplication Oblivious Joi
IVIOUS Jolin
(e.g. C =A% B)

FEARLESS engine 40 /49

Performance Impact - Matrix Size - Summary

>

We observe similar trends for all matrix operations

v

We observe minimal overhead for encrypted computation

v

However, the overhead depends on operation type

» More experimental evaluations in Section 5

FEARLESS engineering

Performance Impact - Block Size

Execution Time —— Execution Time

IR
S
225 LRI
PR LTS
e
2z

18800 e
22 b e e
i Ve NIy o
18400 LRI 72 00
7 \,‘ ZLLLY ’.'::’.I.' 00

L
Vs

Matrix Multiplication Time (ms)

Matrix Multiplication

FEARLESS engineering

Performance Impact - Block Size - Summary

» We observe execution time increases with block size

» Also, very small block size increases execution time, due to
blocking overhead

» As a result, we performed optimization

FEARLESS engineering

Comparison with ObliVM

» We compare performance of SGX-BigMatrix with ObliVM for
two-party matrix multiplication

» We observe that SGX-BigMatrix is magnitude faster because
we are utilizing hardware and do not require expensive over
the network communication

Matrix OblivM BigMatrix | BigMatrix
Dimension SGX Enc. | SGX Unenc.
100 28s 660ms 10ms 10ms
250 7m Os 90ms 93ms 88ms
500 53m 48s 910ms 706.66ms 675.66ms
750 2h 59m 40s 990ms | 2s 310ms 2s 260ms
1,000 6h 34m 17s 900ms | 10s 450ms | 10s 330ms

Table: Two-party matrix multiplication time in ObliVM vs BigMatrix

FEARLESS engineering

Case Studies - Page Rank

» Performed Page Rank on three popular datasets

» Each dataset contains directed graph

Data Set Nodes | BigMatrix Encrypted

Wiki-Vote 7,115 97s 560ms
Astro-Physics | 18,772 6m 41s 200ms
Enron Email | 36,692 23m 19s 700ms

Table: Page Rank on real datasets

FEARLESS engineering

Conclusion

v

We propose a practical data analytics framework with SGX

v

We present BigMatrix abstraction to handle large matrices in
constrained environment

» We proposed a programming abstraction for secure data
analytics

>

FEARLESS engineering

We applied our system to solve real world problems

Thank You

Questions / Comments

Fahad Shaon - fahad.shaon@utdallas.edu

Murat Kantarcioglu - muratk@utdallas.edu

v

v

v

Zhigiang Lin - zhiqiang.lin@utdallas.edu
Latifur Khan - 1khan@utdallas.edu

v

FEARLESS engineering

fahad.shaon@utdallas.edu
muratk@utdallas.edu
zhiqiang.lin@utdallas.edu
lkhan@utdallas.edu

References |

[Intel (2015). Presentation for Intel SGX: ISCA 2015. URL: https:
//software.intel.com/sites/default/files/332680-
002.pdf.

[§ Islam, Mohammad Saiful, Mehmet Kuzu, and Murat Kantarcioglu
(2012). “Access Pattern disclosure on Searchable Encryption:
Ramification, Attack and Mitigation.” In: NDSS. Vol. 20, p. 12.

[4 Liu, Chang et al. (2015). “Oblivm: A programming framework for
secure computation”. In: Security and Privacy (SP), 2015 IEEE
Symposium on. |IEEE, pp. 359-376.

[Naveed, Muhammad, Seny Kamara, and Charles V Wright (2015).
“Inference attacks on property-preserving encrypted databases”.
In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, pp. 644—655.

FEARLESS engineering

https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf

References |l

[4 Ohrimenko, Olga et al. (2016). “Oblivious Multi-Party Machine
Learning on Trusted Processors”. In: 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX
Association, pp. 619-636. 1SBN: 978-1-931971-32-4. URL:
https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/ohrimenko.

[1 Zheng, Wenting et al. (2017). “Opaque: A Data Analytics
Platform with Strong Security”. In: 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17).
Boston, MA: USENIX Association. URL:
https://www.usenix.org/conference/nsdil7/technical-
sessions/presentation/zheng.

FEARLESS engineering

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng

