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Introduction

I Cloud computing is ubiquitous
I No upfront infrastructure cost
I Speed
I Scale as needed

I Market is still growing fast
I Market size: 2018 - $182.4B,

2022 - $331.2B

Cl d C i
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Cloud computing - Issue

I Security breaches are very frequent now-a-days
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Security Breach in Cloud Context

I Third-party vendor system
had publicly accessible
AWS S3 bucket

I Impact: 6 million records
were compromised

I Solution: Enable encryption
in the S3 bucket
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Data Analytics on Cloud - Issues

Code & Data

Result

Some Issues

I Sensitive data (e.g., medical, financial data) exposure

I Highly vulnerable to insider attack

I Service provider can observe the data and patterns
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One Solution - Secure Data Analytics on Cloud

I We do not trust the cloud, unless it has trusted processor

I We only outsource encrypted data

I However, encrypted data is difficult to analyze
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Chapters

I A Practical Framework for Executing Complex Queries over
Encrypted Multimedia Data [DBSec 2016]

I SGX BigMatrix: A Practical Encrypted Data Analytic
Framework with Trusted Processors [CCS 2017]

I SGX IR: Secure Information Retrieval with Trusted Processors
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Problem Definition

File Server

(No compute)

Result

I User wants to safely store documents in cloud storage

I User also wants to search the uploaded file

I We are using servers without computation capability, such as,
Google Drive, Dropbox, Box, Amazon S3, etc.
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Searchable Encryption - Introduction

I Given a set of documents we encrypt the documents and
create an encrypted inverted index.

I Then encrypted document and inverted index is uploaded to
server

I To search we create special trapdoor from the input keyword
and sent to server

I Server then find documents using the trapdoor.
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Target

Find photos of Jhon taken in last summer in Hawaii during sunset?

I Restriction: server does not support custom computation
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Our Solution - ETL QP Frmework

Extract Transform Load

extracted feature
values,

inverted 
 index,

Cloud File

Storage
encrypted

inverted index

Cloud File

Storage

Post-Process

Query
search

User

fetch relvant part 
of encrypted index

false negative 
reduction (optional)

display result

(a) Index creation, encryption and upload

(b) Query and post-process phase to search content
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Extract

I Necessary features of documents are extracted in this phase.

I Features extractors are defined based on application need.

I Features can be defined by the user

I Output of this phase is feature, value pairs per document.
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Extract - example

Di

Features

I (Location, (2116’42"N, 15750’02.8"W))

I (CreatedAt, 6/7/2018 7:00pm)

I (Aperture, 2.4)

I (ShutterSpeed, 1/100)

I (Faces, [(X:60, Y:34, H: 25, W: 32)])

We extract necessary features(i.e. meta-data) from images and
output sequence of tuples in the form

〈id(Di), (fa, vα), (fb, bβ), (fc, vγ)〉
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Transform

I Generate signature value based on feature-value
combination

I Example: Location
I Input: 〈id(Di), (Location, (longitude, latitude)〉
I We look up the address of the geo location value and generate

search signatures based on country, state, city, address, etc.
I S1 = H(‘Location′ || ‘Country′ || Country Value)
I S2 = H(‘Location′ || ‘State′ || State Value)
I Output: 〈S1, id(Di)〉, 〈S2, id(Di)〉
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Transform output example

Search 
Signature Document ID List

(d) Inverted index,
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Load - Overview

I Here we encrypt and load the inverted index to cloud file
server.

I We observe that distribution of the length of the document
list of search signatures can be approximated with Pareto
distribution.

I Based on that we further block the document list (details in
full version)

I Then we generate search signatures of the blocked
document list.

I And keep certain information in a cache.
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Load - Algorithm
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Query and Post Process - Overview

I Given a query we first extract and transform it

I Next we generate search signatures

I Generate trapdoors

I Get those trapdoor related information

I Then decrypt the document ids

I Finally, remove false positives (if necessary)
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Query
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Complex Feature: Face Recognition

EigenFace

I We normalize input face images
A = [Φ1 Φ2 . . .ΦM ]

I Find eigen vectors (uj) of ATA

I Get top K eigen vectors

I Represent input Φi =
∑K

j=1wjuj ,

where weight wj = uTj Φi

I Calculate Ωi =
[
w1 w2 . . . wk

]T
,

which is the projection in eigen
space.

I To match, we normalize (Φq),
project (Ωq), and compute distance

w1

w2

w3

1

2

q

3

Faces in Eigen Space
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Encrypted Eigenface Recognition - ETL

I Extract: Find face locations in image
I id(D1) : 〈‘Face′, (X:10px, Y:12px, H: 120px, W: 120px)〉

I Transform:
I Convert face to point in EigenFace Plane ω
I Define Euclidean LSH function
I bucket ids = Find LSH bucket ids of ω
I search signatures = generate signatures(bucket ids)

I Load:
I Upload search signatures and document assignments
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Euclidean LSH

I Random LSH vector, ~e

I Input point/vector, ~u

I LSH line bucket length, b

I BucketId = Hash(u×cos θb , ê)
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Encrypted Eigenface Recognition - QP

I Query:
I Given a new Face
I Convert to a point in eigen plane point
I Create bucket ids of previously defined LSH schema.
I Create search signatures of the bucket ids
I Now search the search search signatures in the encrypted

index

I Post Process:
I Remove the false positives due to LSH
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Experiment - Features and DataSet

I Our prototype image storage system can handle 4 types of
features
I Location

I Find images based on location

I Time
I Find images that are taken on a specific time or in a time

range

I Texture and Color
I Find images that are similar, e.g., images of sunset, sky, etc.

I Face
I Find images of a particular person.

I Dataset: Randomly selected 20,109 images from YFCC100M
dataset.
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Load time and Index Size
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Experiment - Query Time
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Conclusion

I We have proposed a practical framework for performing
complex queries over encrypted multimedia data.
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Secure Data Analytics - with Outsourced Computation

I We outsource encrypted sensitive data

I We also want to perform secure computation in cloud
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Secure Data Analytics - Approaches

Pure Cryptographic Approach

I Secure Multi-party
Computation

I Provides highest level of
security

I High computational cost

I Impractical for large data
processing

Trusted Hardware

I Cost effective

I Provides reasonable security

I Intel SGX is available in all
new processors

I Needs careful consideration
of side channel attacks
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Background - Intel SGX Application

Untrusted Part 

of App

Trusted Part 

of App

I We only trust the processor and the code inside the
enclave (Intel, 2015)
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Background - Intel SGX Impact

I We can outsource computation securely

I No need to trust the cloud provider (i.e. Hypervisor, OS,
Cloud administrators)
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Threat Model

Server

Memory Processor

Enclave

Disk

Code & Data

Result

I Adversary can control OS (i.e. memory, disk, networking)

I Adversary can not temper with enclave code

I Adversary can not observe CPU register content
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Challenges - Obliviousness

Challenge: Access Pattern Leakage

I SGX uses system memory, which is controlled by the adversary

I Adversary can observe memory accesses

I Memory access reveals a lot about the data (Islam, Kuzu, and
Kantarcioglu, 2012; Naveed, Kamara, and Wright, 2015)

Solution

I To reduce information leakage we ensure Data Obliviousness
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Data Obliviousness - Example

I Program executes same path for all input of same size

Example: Non-Oblivious swap method of Bitonic sort

if (dir == (arr[i] > arr[j])) {

int h = arr[i];

arr[i] = arr[j];

arr[j] = h;

}
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Data Obliviousness - Example (Cont.)

Example: Oblivious swap method of Bitonic sort

int x = arr[i];

int y = arr[j];

_asm{

...

mov eax , x

mov ebx , y

mov ecx , dir

cmp ebx , eax

setg dl

xor edx , ecx

mov eax , x

mov ecx , y

mov ebx , y

mov edx , x

cmovz eax , ecx

cmovz ebx , edx

mov [x], eax

mov [y], ebx

}
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Data Obliviousness - Challenges

Challenge

I Building data obliviousness solution is non-trivial

I Requires a lot of time and effort

Solution

I We provide our own python (NumPy, Pandas) inspired
language that ensures data obliviousness
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Data Oblivious - Vectorization

I We removed if and emphasis on vectorization

Example: Compute average income of people with age >= 50

sum = 0, count = 0

for i = 0 to Persons.length:

if Persons[i].age >= 50:

count++

sum += Persons[i]. income

print sum / count
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Data Oblivious - Example

Example: Compute average income of people with age >= 50

S = where(Person , "Persons[‘age ’] >= 50")

print (S .* Persons[‘income ’] ) / sum(S)
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Challenge - Memory constraint

Challenge

I Current version of SGX (v1) allows only 90MB of memory
allocation

Solution

I We build flexible data blocking mechanism with efficient
and secure caching

I We build matrix manipulation library that supports blocking
and we call the abstraction BigMatrix
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System Overview - SGX BigMatrix

Untrusted Trusted

Compiler
Block Size
Optimizer

Service Manager
BigMatrix Library

Intel SGX SDK

Execution 
Engine

Block
Cache

OCalls

ECalls

Compiler

BMRT Client

ServerClient

SGX BigMatrix
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BigMatrix Library

Untrusted Trusted

Compiler
Block Size
Optimizer

Service Manager
BigMatrix Library

Intel SGX SDK

Execution 
Engine

Block
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OCalls
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Compiler

BMRT Client

ServerClient

SGX BigMatrix - BigMatrix Library
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BigMatrix Library

Operations in BigMatrix Library

I Data access operations - load, publish, get row, etc.

I Matrix Operations - inverse, multiply, element wise,
transpose, etc.

I Relational Algebra Operations - where, sort, join, etc.

I Data generation operations - rand, zeros, etc.

I Statistical Operations - norm, var
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BigMatrix Library - Security Properties

I All the operations are data oblivious

I All the operations supports blocking

I We proved that combination of data oblivious operations is
also data oblivious (in Section 4)

I Data oblivious and blocking aware implementation details in
the paper
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BigMatrix Library - Trace

I Each operation has fixed trace

I Trace is the information disclosed to adversary during
execution

I For example: operation type, input and output data size

Example: Trace of Matrix Multiplication C = A ∗B
I Instruction type (i.e. multiplication)

I Input Matrices size (i.e., A.rows,A.cols, B.rows,B.cols)

I Output Matrix size (i.e., C.rows,C.cols)

I Block size

I Oblivious memory read and write sequences, which does not
depend on data content

FEARLESS engineering 46 / 89



BigMatrix Library - Trace

I Each operation has fixed trace

I Trace is the information disclosed to adversary during
execution

I For example: operation type, input and output data size

Example: Trace of Matrix Multiplication C = A ∗B
I Instruction type (i.e. multiplication)

I Input Matrices size (i.e., A.rows,A.cols, B.rows,B.cols)

I Output Matrix size (i.e., C.rows,C.cols)

I Block size

I Oblivious memory read and write sequences, which does not
depend on data content

FEARLESS engineering 46 / 89



Exec. Engine & Block Cache
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FEARLESS engineering 47 / 89



Exec. Engine & Block Cache

Execution Engine

I Execute BigMatrix library operations

I Parse instruction in the form of

Var ASSIGN Operation (Var, Var, ...)

I Process sequence of instructions

I Maintain intermediate states required to execute complex
program, such as, variable to BigMatrix assignments

Block Cache

I Help with the decision when to remove a block from memory
based on next sequence of instructions
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Exec. Engine & Block Cache - Security Properties

I Execution Engine and Block Cache is also data oblivious
given the input program is data oblivious

I Compiler warns about potential data leakage

I Adversary can not infer anything more about data, apart from
the trace of all the operations
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Compiler
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Compiler

I Compiles our python inspired language into basic command

I It ensures data obliviousness by removing support for if

I We emphasis on operation vectorization

Input: Linear Regression

x = l o a d ( ‘ path / to / X Matr ix ’ )
y = l o a d ( ‘ path / to / Y Matr ix ’ )
x t = t r a n s p o s e ( x )
t h e t a = i n v e r s e ( x t ∗ x ) ∗ x t ∗ y
p u b l i s h ( t h e t a )
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Compiler - Output

Output: Linear Regression

x = l o a d ( X M a t r i x I D )
y = l o a d ( Y M a t r i x I D )
x t = t r a n s p o s e ( x )
t1 = m u l t i p l y ( xt , x )
u n s e t ( x )
t2 = i n v e r s e ( t1 )
u n s e t ( t1 )
t3 = m u l t i p l y ( t2 , x t )
u n s e t ( x t )
u n s e t ( t2 )
t h e t a = m u l t i p l y ( t3 , y )
u n s e t ( y )
u n s e t ( t3 )
p u b l i s h ( t h e t a )
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Compiler - Track data leakage

I We report against accidental data leakage through trace

I We check if any sensitive data is used in trace of any operation

I In our system, sensitive data - content of any BigMatrix,
content of intermediate variables

Example

X = load(‘path/to/X_Matrix ‘)

s = count(where(X[1] >= 0))

Y = zeros(s, 1)

publish(Y)

We report that zeros operation revealing sensitive data s
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SQL Support

I We also support basic SQL

Input

I = sql(‘SELECT *

FROM person p

JOIN person_income pi (1)

ON p.id = pi.id

WHERE p.age > 50

AND pi.income > 100000 ’)
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SQL Support (Cont.)

Output

t1 = where(person , ’C:3;V:50;O:=’)

# person.age is in column 3

t2 = zeros(person.rows , 2)

t3 = get_column(person , 0)

# person.id is in column 0

set_column(t2, 0, t3)

set_column(t2, 1, t1)

t4 = where(person_income , ’C:1;V:100000;O:=’)

t5 = zeros(person_income.rows , 2)

t6 = get_column(person_income , 0)

# person_income.id is in column 0

set_column(t5, 1, t4)

set_column(t5, 0, t6)

A = join(t2, t5, ’c:t2.0;c:t2.0;O:=’, 1)

...
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Block Size Optimizer
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Block Size Optimizer - Intro & Design Decisions

I We observed that input block size has impact on
performances of the system

I Adversary doesn’t gain any knowledge about data based on
block size

I So, we find optimum block size for each instruction before
executing a program

I We explicitly do not want to perform optimization inside
enclave because
I Optimization libraries are large and complex, which can

introduce unintended security flaws
I Any efficient optimization algorithm will reveal information

about data
I So we only perform optimization on trace data, nothing else
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Block Size Optimizer - Overview

I We generate DAG of execution graph
I Internal nodes represent operations
I Edges represent block conversions

I We know cost for each operation for different matrix and
block size

I Given input matrix sizes we can find optimized block size

I We can convert one block configuration to another and know
the cost of conversion
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Block Size Optimizer - Example - Linear Regression

I Execution graph (DAG) of Θ = (XTX)−1XTY in liner
regression training phase
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Block Size Optimizer - Example - LR Cost Function

Cost = Convert(X, (brX , bcX), (x0, x1))

+OP Cost(′Transpose′, X, (x0, x1))

+ Convert(XT , (x1, x0), (x2, x3))

+ Convert(X, (brX , bcX), (x4, x5))

+OP Cost(′Multiply′, [XT , X], [(x2, x3), (x4, x5)])

+ ...

We convert this into integer programming and solve it for all the
xn variables.
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Experimental Evaluations

We implemented a prototype using Intel SGX SDK and observe
performance of different operations

Setup

I Processor Intel Core i7 6700

I Memory 64GB

I OS Windows 7

I SGX SDK Version 1.0

I Number of Machine 1

FEARLESS engineering 61 / 89



Performance Impact - Matrix Size
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Performance Impact - Matrix Size - Summary

I We observe similar trends for all matrix operations

I We observe minimal overhead for encrypted computation

I However, the overhead depends on operation type

I More experimental evaluations in Section 5
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Performance Impact - Block Size

Execution Time
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Performance Impact - Block Size - Summary

I We observe execution time increases with block size

I Also, very small block size increases execution time, due to
blocking overhead

I As a result, we performed optimization
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Comparison with ObliVM

I We compare performance of SGX-BigMatrix with ObliVM for
two-party matrix multiplication

I We observe that SGX-BigMatrix is magnitude faster because
we are utilizing hardware and do not require expensive over
the network communication

Matrix ObliVM BigMatrix BigMatrix
Dimension SGX Enc. SGX Unenc.

100 28s 660ms 10ms 10ms
250 7m 0s 90ms 93ms 88ms
500 53m 48s 910ms 706.66ms 675.66ms
750 2h 59m 40s 990ms 2s 310ms 2s 260ms

1,000 6h 34m 17s 900ms 10s 450ms 10s 330ms

Table: Two-party matrix multiplication time in ObliVM vs BigMatrix
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Case Studies - Page Rank

I Performed Page Rank on three popular datasets

I Each dataset contains directed graph

Data Set Nodes BigMatrix Encrypted

Wiki-Vote 7,115 97s 560ms
Astro-Physics 18,772 6m 41s 200ms
Enron Email 36,692 23m 19s 700ms

Table: Page Rank on real datasets
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Conclusion

I We propose a practical data analytics framework with SGX

I We present BigMatrix abstraction to handle large matrices in
constrained environment

I We proposed a programming abstraction for secure data
analytics

I We applied our system to solve real world problems
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Problem - Secure Cloud based Information Retrieval System

Encrypted Intermediate Data 

Encrypted Result

Pre-Processing

Encrypted Search Query 

Final Processing

I We want to build a secure information retrieval system

I Build index securely in the cloud

I Allow secure information retrieval
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Supported document and query types

I Text Data
I Ranked document retrieval using TF-IDF (Token Frequency

and Inverse Document Fequency)

I Image Data
I Face recognition using Eigenface
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Text pre-processing in client

Tokenization
Stemming

TokenID
Generation

Cryptography is 
the practice and 

study of techniques 
for secure 

communication ...
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I We tokenize and stem the input text files

I We build a matrix I with token id, document id, and
frequency columns

I Finally, we encrypt I and upload

I Single round of read and write is required
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Text Indexing - Server

doc-idtok-id freq

1 1 2
2 1 3
... ... ...

8 2 1
1 2 5
... ... ...

17 3 8
1 4 1
... ... ...

Sort Count & Sum Sort and

Adjust

doc-idtok-id freq

1 1 2
1 2 5

... ... ...

1 4 1
... ... ...

2 1 3

2 5 10

3 6 4

... ... ...

counttok-id sum

1 0 0
# # #
... ... ...

2 8 20
# # #
... ... ...

3 4 9
# # #
... ... ...

counttok-id sum

1 8 20

2 4 9

3 7 15
4 5 3

# # #
... ... ...

... ... ...

5 1 2

6 1 1

I I ′ ← Obliviously sort I on token id column
I We generate U , to keep count and sum of frequencies

I c← I ′[i].token id 6= I ′[i− 1].tok id
I U [i].sum← obliviousSelect(sum,#, 1, c)
I sum← obliviousSelect(sum, 0, 1, c) + I[i].frequency

I Finally, we adjust one space up to put
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Oblivious Select

oblivousSelect(a, b, x, y):

...

mov %[x],%%eax

mov %[y],%%ebx

xor %%eax , %%ebx

...

mov %[a],%%ecx

mov %[b],%%edx

cmovz %%ecx ,%%edx

...

mov %%edx , %[out]
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Bucket size optimization

I We split token into smaller buckets to reduce dummy entries

I We optimize bucket size b from count column of U ′

I Total buckets for ith token dU
′[i].count

b e
I Elements in last bucket U ′[i].count%b
I So, padding for ith token b− U ′[i].count%b
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Padding Generation

We regenerate token id with bucket number function σ (J)

doc-idtok-id freq

1 1 2
1 2 5

... ... ...

1 4 1
... ... ...

2 1 3

2 5 10

3 6 4

... ... ...

Regenerate
 TokenId

doc-idtok-id freq

1,0 1 2

7 2

... ... ...

1 3

9 10
... ... ...

1,1
... ... ...

2,0
... ... ...

2,1

9 103,0

We generate padding (X)

Generate 
Padding Rows

counttok-id sum

1 8 20

2 4 9

3 7 15
4 5 3

# # #
... ... ...

... ... ...

5 1 2

6 1 1

doc-idtok-id freq

1,1 # #
... ... ...

... ... ...

... ... ...

2,1
... ... ...

3,1

# # #

# #

## #

# #
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Padding Generation - Algorithm

1: for i = 0 to numToken do
2: for j = b− 1 to 0 do
3: c← U ′[i].count%b < j

4: t← σ(U ′[i].token id, bU
′[i].count

b c)
5: X[i ∗ b+ j].token id← obliviousSelect(t,#, 1, c)
6: end for
7: end for

For each token we generate b rows, among that b− U ′[i].count%b
rows have proper token id, remaining are totally dummy
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Final token frequency table generation

I Finally we merge and sort X and J to get the T matrix.

I On T we run term frequency functions

1 + log(tft,d)

I On U ′ we run document frequency functions, such as, IDF

log
N

dft

I Query result we use T for TF and U ′ for IDF
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Bitonic Sorting of Arbitrary N

I Bitonic sort [Batcher, 1968] needs input to be size of 2k

I Introduces huge overhead, when k is large

I We use arbitrary length version [Lang, 1998]

I However, this is recursive and SGX is memory constrained
environment

I So we propose a non-recursive algorithm
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Bitonic Sorting of Arbitrary N - Concept

Concept

I We can express a number as
N = 2xm+...+2x3+2x2+2x1

I Merge can sort a descending
and an ascending block into
ascending order

I We sort then merge from
smallest to biggest block

Sort Merge
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Bitonic Sorting Arbitrary N - Non-recursive Algorithm

1: for d = 0 to dlog2(N)e do
2: if ((N >> d) & 1) 6= 0 then
3: start← (−1 << (d+ 1)) & N
4: size← 1 << d
5: dir ← (size & N &−N) 6= 0
6: bitonicSort2K(start, size, dir)
7: if !dir then
8: bitonicMerge(start,N − start, 1)
9: end if

10: end if
11: end for
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Experimental Result
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Experimental Result
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Face Recognition Indexing

I We adopt EigenFace

I Pre-processing and finding images are simple matrix
operations

I Core problem to solve obliviously is eigenvector calculation

I We adopt Jacobi method of eigenvector calculation
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Eigenvector Calculation - Jacobi Method

Oblivious 
Value Extract

Oblivious 
Column Extract

Rotate 

Oblivious 
Column Assign

Oblivious 
Row Assign

Calculate 
& Ressign

We find the max off-diagonal element at Ak,l, then rotate column
k and l. Repeat until A becomes diagonal. The diagonal values
are eigen values.
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Oblivious Jacobi eigenvector calculation - Algorithm

E ← identity(n)
ε1 ← 10−12, ε2 ← 10−36

for it = 0 to n2

max, k, l← oMaxIndex(A)
C = max < ε1
U ← oColExtract(A, k)
V ← oColExtract(A, l)
kk ← oV alueExtract(U, k)
ll← oV alueExtract(V, l)
d = ll − kk
m = |max| < ε2|d|

p← d
2×max

t1 ← max
d

t2 ← | 1

|p|+
√
p2+1
|

t← oSelect(t1, t2,m, 1)
c = 1√

t2+1
s = t× c
τ = s

1+c

R = s.

[
−τ −1
1 −τ

]
[
U
V

]
+ = R×

[
U
V

]
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Oblivious Jacobi eigenvector calculation - Algorithm(Cont.)

kk ← kk − t×max
ll← ll + t×max
oV alueAssign(U, k, kk)
oV alueAssign(V, l, ll)
oV alueAssign(U, l, 0)
oV alueAssign(V, k, 0)
oCondColAssign(A,U, k, !C)
oCondColAssign(A, V, l, !C)
oCondRowAssign(A,U, k, !C)
oCondRowAssign(A, V, l, !C)

U ← oColExtract(E, k)
V ← oColExtract(E, l)[
U
V

]
+ = R×

[
U
V

]
oCondColAssign(E,U, k, !C)
oCondColAssign(E, V, l, !C)
end for

Vi ← Ai,i, ∀i ∈ 0 to n
normalize(E)
sort(E) based on V
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Experimental Result - Eigenvector calculation
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Thank You

Questions / Comments
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