
The Queen's Guard: A Secure
Enforcement of Fine-grained Access
Control In Distributed Data Analytics
Platforms - SecureDL

Fahad Shaon *^ - DataSecTech

Sazzadur Rahaman* - University of Arizona

Murat Kantarcioglu - DataSecTech

* Contributed equally
^ Current affiliation Google

Agenda

▷ Opportunities and contribution

▷ Threat model

▷ Background - Apache Spark

▷ IRM based access control - "add-on" security

▷ Attacks on IRM based solution

▷ Defense against these attacks

○ Proactive and reactive

▷ Evaluation results

2

Opportunities and Contribution

▷ Apache Spark

○ Doesn't have built in fine-grained security

▷ "add-on" security solutions are inadequate

○ We show attacks using invasive system API

▷ Propose two layer defense mechanisms

▷ Propose fully customizable access control with

masks and filters

3

Threat Model

4

▷ Attacker's aim: Evade fine-grained

▷ Is an insider in multi-tier organization

○ Has lower privilege
○ Can run code for data-analytics

▷ Has incentive to evade ACL

○ Especially if chance of getting caught is low

▷ Real world use cases
○ Criminals Increasing SIM Swap Schemes to Steal Millions of

Dollars from US Public
○ Spotlight on Insider Fraud in the Financial Services Industry

https://www.ic3.gov/Media/Y2022/PSA220208
https://www.ic3.gov/Media/Y2022/PSA220208
https://apps.dtic.mil/sti/pdfs/AD1123958.pdf

Background - Spark Job Execution

5

Driver

Executor #1

Executor #2

Executor #N

SparkSubmit

…

Cluster

Background - Spark Programming

spark.read.json("accounts.json")

 .filter(r -> r.state == "TX")

 .groupBy("zip").agg(mean("rewards"))

 .collect()

Program to read a json file, filter rows, and aggregate

6

accounts

filter
r -> r.state == "TX"

aggregate

collect

RDD

● After code submission the code gets translated into

RDD (Resilient Distributed Dataset)

● It is lazy evaluated, until necessary computation

won't happen

Access Control using AOP / IRM

@Around("execution(* org.apache.spark.sql.DataFrameReader.json(...))")

def policisOnJsonFile(joinPoint):

 file_path <- joinPoint.getArgs[0]

 u <- fetch_user_info()

 if (!hasAccess(u, file_path)) {

 throw new AccessControlException()

 }

 rdd <- joinPoint.proceed()

 return enforce_policies(file_path, u, rdd)

7

Aspect Oriented Programming based

implementation to enforce policy on json file

Check user has access to the file

Execute the JSON reading function

Add a map() and a filter() functions
to add data masks and filters based
on admin defined policies

RDD after policy enforcement

▷ After the policy enforcement the RDD

have additional filter and map

▷ Filter function is used to remove rows

that user doesn't have access to

○ e.g. User1 don't have access to
accounts with zip 75080

▷ Map function is used for modifying

content of a data

○ e.g. mask all but last 4 digits of credit
card

▷ Added filter and map gets distributed

▷ Similar to GuardMR, Vigiles for Hadoop

8

accounts

filter
r -> r.state == "TX"

aggregate

collect

RDD

filter

map

Policy - Encoded in Yaml

9

Masks:

 phone:

 name: PhoneNumberMask

 type: regex_mask

 detection_regex: >

"\\(?\\d{3}\\)?(-|)\\d{3}-\\d{4}"

 replacement_pattern: '***-***-dddd'

 l4of12d:

 type: static_mask

 data_type: digit

 length: 12

 name: ShowLast4Of12Digits

 visible_anchor: end

 visible_chars: 4

Policy:

 customer_accounts:

 document: customers.accounts

 filter: |

 val ip : String = context("ip")

 val z : Integer = row("zip")

 if(ip == "10.5.17.10") {

 z >= 75080 \&\& z <= 75081

 } else {

 false

 }

 masks:

 credit_card:

 - Masks.l4of12d

 comments:

 - Masks.phone

Attack Surfaces on IRM based Solution

val rd = sc.textFile("users.csv")

val clazz = rd.getClass

// #1. Read with "prev" field

val fld = clazz.getDeclaredField("prev")

fld.setAccessible(true)

val parent = fld.get(rd)

val initParent = fld.get(parent)

// #2. Read with "prev" method

val method = clazz.getMethod("prev")

val parent = method.invoke(rd)

val initParent = method.invoke(parent)

// #3. Read with "parent" method

val mthd = clazz.getMethod("parent", 0)

val initParent = mthd.invoke(rd, ...)

// #4. Read with "firstParent" method

val method =

clazz.getMethod("firstParent")

val initParent = method.invoke(rd, ...)

// Accessing the parent pointer

// with "parent" method

val parent = rdd.parent(0)

10

Apache Spark - Attack Surfaces

▷ Restricting reflection on RDDs.

▷ Preventing framework-specific package

declarations.

▷ Preventing dynamic class loading.

▷ Preventing to override security managers.

▷ Preventing native codes and libraries.

11

SecureDL - System Architecture

12

Use program analysis (static analysis) to block

▷ Framework specific package declaration

▷ Restrict permissive System API

○ Dynamic classloading

○ Security Manager overriding

○ Native code/library loading

▷ These can be invasive in some cases

○ Implemented allowlisting mechanism

Defense - Proactive

13

Defense - Proactive

▷ Use program analysis (backward dataflow) to detect

reflection API usages

○ Track use of java.lang.Object get(java.lang.Object) and java.lang.Object

invoke(java.lang.Object,java.lang.Object[])

○ Especifically if RDD instance is first parameter to this

○ Note: JavaSecurityManager can't protect against get or invoke calls

▷ Utilized CryptoGuard

14

https://dl.acm.org/doi/10.1145/3319535.3345659

Defense - Reactive

▷ Enable a Security Manager that restricts method calls

○ accessDeclaredMembers

○ suppressAccessChecks

○ newProxyInPackage

▷ Analyze call trace to

○ find if a call generated from user submitted code

15

Evaluation - Access Control Overhead

▷ Policy overhead is highly policy dependent

▷ Average overhead 4% on TPCH query with masking policy

▷ Paper contains many more experimental results
16

RQ: What is the overhead of policy enforcement?

Evaluation - Proactive Analyzer

▷ Collected 2120 spark repositories from GitHub

▷ 637 were built using maven

▷ 417 were successfully built

▷ Found 247 analyzable jars

○ Exclude uber-jars

▷ Found some issues in 21 jars

○ 12 jars had org.apache package
○ 7 jars use Class.forName
○ 8 jars has networking calls

17

RQ: What are the common proactively detectable issues in spark
programs in the wild?

Questions?
Contacts

Fahad Shaon - fs@shaon.dev
Sazzadur Rahaman - sazz@cs.arizona.edu

Murat Kantarcioglu - murat@datasectech.com

Patent - US 11,620,378
OSS - https://github.com/DataSecTech

https://patents.google.com/patent/US11620378B2/en
https://github.com/DataSecTech

