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Over the last few years, data storage in cloud-based services has been very popular due to

the easy management and monetary advantages of cloud computing. Recent developments

showed that such data could be leaked due to various attacks. To address some of these

attacks, encrypting sensitive data before sending to the cloud emerged as an important

protection mechanism. Still, indexing, querying and running complex data analytics tasks

on the encrypted data remained as important challenges. In this dissertation, we address

some of the encrypted data processing challenges using two different but complementary

approaches. First, we explore what kind of data querying functionality we can provide for

encrypted data even if we have no support from the server. Later, we provide solutions for

the use cases where the cloud server provides a trusted processor for processing some of the

encrypted data.

For the cloud deployments where there is only limited support from the cloud server 1, we

provide a new searchable encryption scheme, i.e., a type of encryption technique that allows

querying on encrypted data. Unlike, most of the existing searchable encryption schemes that

1Cloud services such Dropbox, Box, Google Drive allow simple data retrieval and do not provide compu-
tational support (i.e., running an arbitrary code on the encrypted data )
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are developed for keyword searches, our proposed scheme does not require running some

code on the cloud servers. Furthermore, we provide an extensible framework for supporting

complex search queries over encrypted multimedia data. Before any data is uploaded to the

cloud, important features are extracted to support different query types (e.g., extracting

facial features to support face recognition queries) and complex queries are converted to

series of object retrieval tasks for the cloud service.

Later, we explore the setting where the cloud servers provide support for processing en-

crypted data using trusted processors. In this setting, we can execute code in a trusted

processor in a secure manner, i.e, the adversary cannot temper with the code without de-

tection, and data is always encrypted outside the trusted processor.

Over the past few years, efficient and secure data analytics tools (e.g., map-reduce frame-

work, machine learning models, and SQL querying) that can be executed over encrypted data

using the trusted processors have been developed. However, these prior efforts do not pro-

vide a simple, secure and high-level language-based framework that is suitable for enabling

generic data analytics for non-security experts who do not have important security concepts

such as “oblivious execution”. We thus provide such a framework that allows data scientists

to perform the data analytic tasks with secure processors using a Python/Matlab-like high-

level language. Also, we perform block size optimization and provide security guarantees for

data obliviousness.

Similarly, systems to accesses encrypted inverted index using trusted processes have been

developed before. However, none of these works proposed a mechanism to build the index in

the cloud securely. All of these works assume that some form of unencrypted inverted index

is already available. Building an inverted index can be very memory consuming task for

big data on memory constraint platforms. So we propose a system to build the encrypted

inverted index in the cloud using trusted processors for text as well as multimedia data in
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an oblivious and secure manner. We design our index to support TF-IDF based ranked

document retrieval. Our system also supports indexing for answering complex queries such

as face recognition.
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CHAPTER 1

INTRODUCTION

Increasingly, individuals and organizations are adopting cloud computing for various com-

putation needs because cloud computing provides a cost-effective alternative to traditional

computational infrastructure. In general, there are no upfront cost and we pay only for the

services based on usages. Moreover, we can develop and deploy software very fast using the

advanced tools provided by cloud service vendors. However, there are several drawbacks

as well. Adopting a public cloud increases chances of sensitive data exposure due to mis-

configuration (Deahl, 2017) and poor security settings (Agarwal, 2014; Stadmeyer, 2014).

Also, in public cloud computing setup, multiple users’ computation is performed in a single

machine for cost minimization, which exposes the user to insider attacks (Duncan et al.,

2012). Finally, the cloud service provider can also observe stored unencrypted data and

access patterns of the data. For some businesses, this might be detrimental as a large cloud

provider can build competitive products (Novet, 2018).

To address these issues one solution is to encrypt data and code before sending these to

the cloud, which allows the user to leverage cloud computing services securely. However,

searching and performing data analytics on encrypted data is difficult. It is especially diffi-

cult to perform complex search queries, such as face recognition, on encrypted multimedia

data without the support of advanced trusted processors. Even with the support of trusted

processors we need to address several security challenges in building systems for data ana-

lytics and data indexing, such as side channels due to memory accesses. In this dissertation,

we address some of these important challenges.

We start with the problem of searching encrypted multimedia data in cloud computing

setting. Over the years, many searchable encryption techniques have been proposed (Curt-

mola et al., 2006; van Liesdonk et al., 2010; Cash et al., 2014; Kamara and Papamanthou,

2013; Cash et al., 2013; Naveed et al., 2014; Ostrovsky, 1990; Goldreich and Ostrovsky, 1996;
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Bösch et al., 2015). Among those approaches, searchable symmetric encryption (SSE) (Curt-

mola et al., 2006; van Liesdonk et al., 2010; Cash et al., 2014; Kamara and Papamanthou,

2013; Cash et al., 2013; Naveed et al., 2014; Bösch et al., 2015) emerges as an efficient alter-

native for cloud based storage systems due to minimal storage overhead, low performance

overhead, and relatively good security.

However, almost all searchable encryption techniques require executing some code on the

cloud servers to enable efficient processing. On the other hand, popular commercial personal

cloud storage providers (Dropbox, 2019a; Box, 2019a; Google, 2019a) only support basic

file operations like reading and writing files that make it infeasible to apply traditional SSE

techniques. Furthermore, complex queries on multimedia data may require running different

and expensive cryptographic operations. These limitations create a significant problem for

wide adoption of SSE techniques. Therefore, developing SSE schemes that can run on the

existing cloud storage systems without requiring the cloud service providers’ cooperation

emerges as an important and urgent need. To our knowledge, only (Naveed et al., 2014)

considered a setup without computational support from the cloud storage but the proposed

solution does not support efficient complex querying over encrypted data.

Even though, one can wish that an alternative SSE as a service could be offered in the

near future by the cloud service providers, due to network effects, many of the existing

users may not want to switch their cloud service providers. Therefore, any new “secure”

cloud storage with SSE providers may have a hard time in getting significant traction. So

supporting SSE on the existing cloud storage platforms without requiring any support from

the cloud storage service providers is a critical need.

In addition, adoption of multimedia (e.g., image, music, video, etc.) data for social com-

munication is increasing day by day. KPCB analyst Mary Meeker’s 2014 annual Internet

Trends report (Meeker, 2014) states 1.8 billion photos shared each day. However, indexing

multimedia data is harder compared to text data. A significant pre-processing is required
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to convert raw multimedia data to a searchable format and queries made on multimedia

data are complex as well. So building efficient cryptographic storage system that can eas-

ily handle multimedia content is a very important problem. In Chapter 4 we propose a

generic searchable symmetric encryption scheme, where user can perform complex query on

encrypted multimedia data using cloud server with only storage.

Alternatively, we can leverage trusted processors to perform computation on encrypted

data in cloud settings as proposed in (Ohrimenko et al., 2016; Zheng et al., 2017; Schuster

et al., 2015). Secure processors allow users to execute programs securely in a manner that

operating systems cannot directly observe or tamper with program execution without being

detected. Previously, one had to purchase specialized hardware to build such systems.

Recently, Intel has included a special module in CPU, named Software Guard eXtension

(SGX), into its 6th generation Core i7, i5, and Xeon processors (Intel, 2015) that can

execute software securely, even when an operating system or a virtual machine monitor (i.e.,

hypervisor) is compromised. In short, SGX reduces the trusted computing base(TCB) to a

minimal set of trusted code (programmed by the programmer) and the SGX processor, where

TCB of a system is the set of all components that are critical to its security.

Still, building a robust secure application with SGX is non-trivial due to several short-

comings of the SGX architecture. In particular, operating systems can still monitor memory

access patterns by the secure trusted code. It has been shown in (Islam et al., 2012; Naveed

et al., 2015) that access pattern leakage can reveal a significant amount of information about

encrypted data. Furthermore, SGX is a memory constrained environment. Current version

of SGX can only support up to 128MB of memory for secure code execution, which includes

on demand memory allocation using malloc or new. In our experiments, we observe that

we can allocate at most about 90MB effectively for storing data. Therefore, we still need

3



efficient memory management mechanisms to process large datasets.1 Finally, the SGX ar-

chitecture does not have built-in support for secure multi-user interactive computation. In

Chapter 5 we propose efficient matrix computation system that can leverage SGX to perform

data analytics operations securely on very large dataset.

Similarly, few systems has been proposed for encrypted index access using SGX. For

instance, in Oblix (Mishra et al., 2018) authors propose few ways to access inverted index

obliviously inside enclave. In HardIDX (Fuhry et al., 2017) authors propose building secure

B+ index, which can later be used to build different application. In Rearguard (Sun et al.,

2018) authors proposed system to retrieve list of documents obliviously from encrypted

index. However, in these works, authors assume that the inverted index is already available

and only focused on accessing the encrypted index securely. In contrast, we focus on building

the index securely using SGX. Because building an inverted index might be trivial but it

is very memory consuming computation. An inverted index is traditionally defined as a

function that returns list of documents associated with input token. So, to build such

index by reading a set of input documents, we need to maintain a hash map (or equivalent

data structure) of the token to document lists. For a memory constraint system, such as

smart phone, this computation might be infeasible. So in our design we push as much

computation to the server as possible. Furthermore, these works mainly focus on building

systems targeting text index. In contrast, we focus on building a secure index for text and

image search in the cloud. Once we built the inverted index we can utilize existing index

accessing systems to efficiently retrieve data. In Chapter 6 we propose an algorithm to

build a search index for text data that can support ranked document retrieval using TF-IDF

scoring. Also, we propose an algorithm to build an index on encrypted images to perform

face recognition.

1It is worth to mention that, Intel also proposed a general dynamic memory allocation mechanism for
the next version of SGX in (McKeen et al., 2016). However, to efficiently analyze very large datasets, we
still need some form of memory allocation mechanisms.
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The rest of the dissertation is outlined as follows. We start by discussing the related

work to the solutions and problems mentioned in this dissertation in Chapter 2. Next, we

review related tools and techniques that are used in this dissertation in Chapter 3. Then, we

provide our solution for searching encrypted multimedia data without computation support

from cloud providers in Chapter 4. Next, we discuss solutions for performing large scale

encrypted data analysis leveraging trusted processors in Chapter 5. Finally, we focus on

building an encrypted index in the cloud using the trusted processors in Chapter 6 and

conclude the dissertation in Chapter 7
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CHAPTER 2

RELATED WORKS

In this chapter, we summarize the literature studies that are relevant to our work in this

dissertation.

2.1 Searchable symmetric encryption

Currently there are few ways to build encrypted cloud storage with content based search.

Searchable symmetric encryption(SSE) is one of those, which allows users to encrypt data in

a fashion that can be searched later on. Different aspects of SSE has been studied extensively

as shown in an extensive survey of provably secure searchable encryption by Bösch at el.

in (Bösch et al., 2015). Curtmola at el. (Curtmola et al., 2006) provided simple construction

for SSE with practical security definitions, which was then adopted and extended by several

others in subsequent work. Few works also looked into dynamic construction of SSE (van

Liesdonk et al., 2010; Cash et al., 2014; Kamara and Papamanthou, 2013; Kamara et al.,

2012) so that new documents can be added after SSE construction.

Another branch of study related to SSE is supporting conjunctive boolean query. Cash

at el. (Cash et al., 2013) proposed such a construction, where authors used multi-round

protocol for doing boolean query with reasonable information leakage. In the process they

also claimed to build the most efficient SSE in terms of time and storage. Kuzu at el. (Kuzu

et al., 2012) proposed an efficient SSE construction for similarity search, where they used

locality sensitive hashing to convert similarity search to equality search. There are also work

towards supporting efficient range query, substring matching query, etc. (Faber et al., 2015),

where a rich query is converted to an exact matching query. However, these constructions

require specialized server. Importantly, we can easily adopt such a conversion technique in

our framework.
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Naveed at el. (Naveed et al., 2014) proposed a dynamic searchable encryption schema

with simple storage server similar to our setup. The system also hides certain level of access

pattern. However, authors did not consider complex query problem in their work, which is

one of the major challenges that we solved in this work.

Another way of querying encrypted database is oblivious RAM (ORAM) described by

Ostrovsky (Ostrovsky, 1990) and Goldreich at el. (Goldreich and Ostrovsky, 1996), which

also hides search access pattern and much secure. Despite recent developments (Pinkas and

Reinman, 2010; Stefanov et al., 2013; Stefanov and Shi, 2013), traditional ORAM remains

inefficient for practical usage in cloud storage system as described in (Bindschaedler et al.,

2015; Naveed, 2015). Furthermore, our proposed system converts complex operations into

sequence of key value read and write operations, which can easily be combined with ORAM

technique to hide the access pattern.

Qin at el. (Qin et al., 2014) proposed an efficient privacy preserving cloud based se-

cure image feature extraction and comparison technique. Similar construction for ranked

image retrieval is proposed by (Xia et al., 2013; Lu et al., 2009; Raval, Pillutla, Bansal,

Srinathan, and Jawahar, Raval et al.). These systems depend on highly capable cloud server

for preforming image similarity query.

Finally, there are few commercial secure cloud storage systems, e.g., SpiderOak (Spi-

derOak, 2019), BoxCryptor (BoxCryptor, 2019). Even though these systems are easy to use

and provide reliable security, these systems provide neither server based search nor complex

query support. All these systems depend on either operating system or local indices to pro-

vide search functionalities. As a result, to provide search functionalities these systems need

to download and decrypt all the data stored in cloud server, which might not be efficient

solution in all circumstances.
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2.2 Intel Software Guard Extension

Because of the availability and sound security guarantees, Intel SGX is already used in

many studies to build secure systems. For instance, Schuster et al. (Schuster et al., 2015)

proposed a data analytics system named VC3 that can perform Map-Reduce programs with

the protection from SGX. However, VC3 does not provide any side channel information

leakage protection and the authors used a simulator to report the result. Therefore, Dinh

et al. (Dinh et al., 2015) proposed random shuffling to protect some information leakage

of VC3. Most recently, Chandra et al. (Chandra et al., 2017) proposed using data noise to

further mitigate these side channel leakages. One can argue that with Map-Reduce some of

the operations proposed in our framework can be performed but it is very well known that

different matrix operations such as matrix multiplication performs poorly in Map-Reduce

based system. In practice, matrix multiplication using map-reduce is only feasible for sparse

matrix. In contrast, our framework is data oblivious and we do not use any data specific

assumption.

Haven (Baumann et al., 2015) is another system that described the ways to adopt SGX to

run ordinary application in a secure manner. However, the way of running legacy binaries

as in Haven can introduce a controlled side channel attacks with SGX (Xu et al., 2015).

Recently, T-SGX (Shih et al., 2017) and SGX-LAPD (Fu et al., 2017) have attempted to

defeat these controlled side channel attacks.

There are many other use cases of SGX. In (Arnautov et al., 2016), the authors proposed

a secure container mechanism that uses the SGX trusted execution support of Intel CPUs

to protect container processes from outside attacks. In (Krandle et al., 2017), the authors

proposed protecting the confidentiality and integrity of systems logs with SGX. In (Bauman

and Lin, 2016), the authors proposed using SGX for computer game protection. In (Brenner

et al., 2016), authors used Intel SGX in building secure Apache Zookeeper (Zookeeper,
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Zookeeper), which is a centralized service to manage configurations, naming, etc. in a

distributed setting. Here authors provided transparent encryption to ZooKeeper’s data.

In (Gupta, Mood, Feigenbaum, Butler, and Traynor, Gupta et al.), the authors theoreti-

cally analyzed the SGX system and proposed a mechanism to use SGX for efficient two-party

secure function evaluation. In (Barbosa et al., 2016), the authors also theoretically analyzed

isolated execution environments and proposed sets of protocols to secure communication

between different parties.

In (Ohrimenko et al., 2016), the authors proposed oblivious multi-party machine learning

using SGX based analysis. Here authors proposed mechanism to perform different machine

learning algorithm using SGX. For each algorithm authors proposed a different mechanism

to handle large dataset. No centralized data handling method was mentioned in the work.

In contrast, our work is focused on building a generic system that can easily be extended

and used for large scale data analytics task that may involve data processing, querying

and cleaning in addition to machine learning tasks. Furthermore, we consider our work

as complimentary to this work since some of these machine learning techniques could be

provided as library functions in our generic language.

For SQL query processing in a distributed manner in (Zheng et al., 2017), the authors

proposed a package for Apache Spark SQL named Opaque, that enables very strong secu-

rity for DataFrames. Opaque offers data encryption and access pattern hiding using Intel

SGX. However, this work does not provide a general language that can be used to do other

computations in addition to SQL queries. Our proposed framework supports SQL query

capabilities in addition to more generic vectorized computations.

In addition to SGX based solutions, there has been a long line of research on building

systems using secure processors. TrustedDB (Bajaj and Sion, 2014), CipherBase (Arasu

et al., 2013), and Monomi (Tu et al., 2013) uses different types of secure hardware to process

queries over encrypted database. Again, these systems mainly focused on sql type processing

and do not provide a generic language for handling data analytics tasks.
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2.3 Intel SGX based search index

In Rearguard (Sun et al., 2018) authors build search indexes for different types of keyword

searches. However, authors assumed to have an initial inverted index built in client end.

In HardIDX (Fuhry et al., 2017) authors proposed building secure B+ index and used it to

build encrypted databases and searchable encryption schema. However, proposed algorithms

are not made oblivious as a result leaks a lot of information via a side channel. Finally,

in Oblix (Mishra et al., 2018) authors proposed building different type of oblivious data

structures using oblivious ram (ORAM) techniques. We consider our work as a complement

to these works one can build index using our techniques and use these systems later to access

the inverted index.
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CHAPTER 3

BACKGROUND

3.1 Searchable Symmetric Encryption

Searchable Symmetric Encryption (SSE) is one of the many mechanisms to enable search

over encrypted data. In an SSE schema, we not only encrypt the input dataset, but also

we create an encrypted inverted index. The index contains a mapping of an encrypted

version of keywords (called trapdoors) to list of document ids that contain corresponding

plain text keywords. Formally, an SSE schema is defined as the collection of 5 algorithms

SSE = (Gen,Enc, Trpdr, Search,Dec) Given security parameter Gen generates a master

symmetric key, Enc generates the encrypted inverted index and encrypted data sets from the

input dataset. Trpdr algorithm takes keywords as input and outputs the trapdoor, which is

used by the Search algorithm to find the list of documents associated with input keywords.

Finally, the Dec algorithm decrypts the encrypted document given the id and proper key.

We refer the reader to (Curtmola et al., 2006) for a further discussion of SSE. Furthermore,

in typical SSE settings, Gen, Enc, Trpdr, and Dec are performed in a client device and the

Search algorithm is performed in a cloud server.

3.2 Intel SGX

Intel SGX is a new CPU extension for executing secure code in Intel processors (Anati et al.,

2013). In the SGX computation model, programmers need to partition the code into trusted

and untrusted components. The trusted code is encrypted and integrity protected, but the

untrusted code is observable by the operating system. During the program execution, the

untrusted component creates a secure component inside the processor called enclave and

loads trusted code into it. After creating the enclave, users can verify that the intended

code is loaded and securely provision the code with secret keys, which is called attestation.
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Internally, the infrastructure uses Enhanced Privacy ID (EPID) (Brickell and Li, 2011) for

hardware-based attestation. In addition, trusted and untrusted components communicate

between each other using programmer-defined entry points. Entry points defined in a trusted

code are called ECalls, which can be called by the untrusted part once the enclave is loaded.

Similarly, entry points defined in untrusted code is called OCalls, which can be called by the

trusted part. More details about the SGX execution model are described in (Costan and

Devadas, Costan and Devadas; Pass et al., 2016).

3.3 Data Oblivious Execution

A program is called data oblivious if for all data inputs the program executes exactly the

same code path. The main benefit of data obliviousness is that any powerful adversary

that is capable of observing code execution, does not learn anything extra about the data

based on the code execution path. To explain data obliviousness, we also have to clearly

define the capabilities of an adversary in our design. We assume that an adversary in an

SGX environment can observe memory accesses, time to execute, OCalls, and any resource

usages from OCalls. However, an adversary in SGX cannot observe internal CPU registers.

We define a program is data obvious in the SGX environment if the same memory regions

are accessed for all possible input datasets. For example, data arithmetic operations, such

as add, mult, etc., are by definition data oblivious because the instruction performs the

same task irrespective of any input data. However, conditional instructions, such as, jne,

jeq1 are not data oblivious because these instruction force different part of the code to be

executed based on input data.

To implement programs that require such conditional operations, we first assign values

from different possible code paths to different registers, then set a flag based on the condition

1jne, jeq are assembly instructions for jumping based on zero flag.
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that we want to test, swap according to the flag, and finally return the contents of a fixed

register. Such techniques are used in previous works (e.g., (Ohrimenko et al., 2016; Rane

et al., 2015)). The data oblivious approach of programming protects against attacks from

access pattern leakage as described in (Islam et al., 2012; Naveed et al., 2015). Because these

attacks are based on the frequency of data access for different input and data obliviousness

guarantees that data access frequency should be the same irrespective of same sized input

data.
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CHAPTER 4

A PRACTICAL FRAMEWORK FOR EXECUTING COMPLEX QUERIES

OVER ENCRYPTED MULTIMEDIA DATA1

4.1 Introduction

In this chapter, we propose an efficient searchable encryption scheme framework to query en-

crypted multimedia data using cloud storage service. Our proposed framework only requires

file storage and retrieval support from cloud storage services. Furthermore, by leveraging

the extensible extract, transform and load operations provided by our framework, users can

build encrypted search systems to handle complex queries. As an example, we show how

our framework could be used to run face recognition queries on encrypted images. To our

knowledge, this is the first system that can support complex queries on encrypted multi-

media data without significant computational support from the cloud service provider (i.e.,

without running customized code in the cloud). Main contributions of this work can be

summarized as follows:

• We propose a generic outsourcing framework that enables secure and efficient querying on

any data. Our framework supports complex querying on any encrypted data by allowing

queries to be represented as a series of simple equality queries using the features extracted

from the data. Later on, these extracted features are transformed into encrypted indexes

and these indexes are loaded to the cloud and leveraged for efficient encrypted query

processing.

• We prove that our system satisfies adaptive semantic security for dynamic SSE.

1© Shaon F., Kantarcioglu M. (2016) A Practical Framework for Executing Complex Queries over
Encrypted Multimedia Data. In: Ranise S., Swarup V. (eds) Data and Applications Security and Privacy
XXX. DBSec 2016. Lecture Notes in Computer Science, vol 9766. Springer, Cham. DOI: https://doi.
org/10.1007/978-3-319-41483-6_14
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• We show the applicability of our framework by applying it to state-of-the-art image query-

ing algorithms (e.g., face recognition) on encrypted data.

• We implement a prototype of our system and empirically evaluate the efficiency under

various query types using real-world cloud services. Our results show that our system

introduces very little overhead, which makes it remarkably efficient and applicable to

real-world problems.

The rest of the chapter is organized as follows: Section 4.2 provides the general setup

and threat model of our system, Section 4.3 describes the internal details of each phase,

Section 4.4 extends our initial framework making it dynamic, in Section 4.5 we formally

prove the security of our system, Section 4.6 shows an application of our proposed framework,

Section 4.7 shows the experimentations, and in Section 4.8 we conclude our work.

4.2 Threat Model

In this study, we consider a setup, where a user owns a set of documents that may include

multimedia documents. The User wants to store these documents into a cloud storage server

in encrypted form. User also wants to perform complex search queries over the encrypted

data. Most importantly, the user wants to utilize the existing cloud storage service, which is

not capable of executing any custom code provided by them. Formally cloud storage server

Z can only perform read and write operations. This simple requirement of cloud storage

server makes the system easily adaptable in several real-world scenarios. On the other hand,

the user has devices with sufficient computation power that can perform modern symmetric

cryptography algorithms and are called clients.

In our system, the communication between server and client is done over an encrypted

channel, such as https. So eavesdroppers can not learn any meaning full information about
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the documents capturing the communication, apart from the existence of such communica-

tion. We also assume that the cloud storage server Z is managed by Bob, who is semi-honest.

As such, he follows the protocol as it is defined but he may try to infer private information

about the document he hosts. Furthermore, the system does not hide the search access

pattern, meaning Bob can observe the trapdoors in search query. Based on the encrypted

file accesses after subsequent search queries, Bob also can figure out trapdoor to document

ids assignments. However, Bob can not observe the plain text keyword of trapdoors.

4.3 The Proposed System

Extract Transform Load

extracted feature
values,

inverted 
 index,

Cloud File

Storage
encrypted

inverted index

Cloud File

Storage

Post-Process

Query
search

User

fetch relvant part 
of encrypted index

false negative 
reduction (optional)

display result

(a) Index creation, encryption and upload

(b) Query and post-process phase to search content

Figure 4.1. Overall workflow of our proposed system. (a) Index creation consists of extract,
transform and load phases. (b) Search consists of query and post-process phases.
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Our main motivation is to build encrypted cloud storage that can support complex search

query with support of a simple file storage server. We generalize the required computa-

tions into a five-phase Extract, Transform, Load, Query, Post-Process (ETLQP) framework.

These five phases represent the chronological order of operations required to create, store

encrypted index, and perform complex operations. Figure 4.1(a) and 4.1(b) illustrate an

overview of different phases in our system.

4.3.1 Extract

In this phase we extract necessary features from a dataset. Let, D = {d1, d2, ..., dn} be a

set of documents, id(di) be the identifier of document di, Θ = {θ1, θ2, ..., θm} be a set of

m feature extractor functions. Functions in Θ can extract a set of feature and value pairs

(f, v) from documents. We build a list Ui with all the feature value pairs extracted from

di. For all the feature extractors θj ∈ Θ we compute (f, v) ← θj(di) and store (f, v) in

Ui. Finally we organize the result in P , such that P [id(di)] ← Ui. Such an example P is

illustrated in Figure 4.2. Here, we have four documents {D1, ..D4}. D1 has feature value

pairs U1 ={(fa, vα),(fb, vβ), (fb, vγ)}, etc.

Feature 
Value pairs

Document
ID

(c) Extracted feature-values, 

Figure 4.2. P , output of extract phase that maps document ids to feature value pairs

To clarify further, let us assume that, we want to build an encrypted image storage

application that can perform location-based queries over the encrypted images. In other
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words, the system is capable of answering queries, such as find images taken in Italy. To

support such a query, we implement a feature extractor function θl, where θl extracts lo-

cation information from image meta data. Output of θl is defined as a feature value pair

(“LOCATION”, “longitude and latitude of image”). We define as many feature extractors

necessary based on the application need and all feature extractor functions return values in

a similar format. In Section 4.6 we discuss in detail how we defined more feature extractors

and use those to answer much more complicated queries. Algorithm 1 describes the extract

phase for building the inverted index.

Algorithm 1 Extract algorithm for building the inverted index

1: Require: D = Document set, Θ = Feature extractor function set.
2: P ← empty hash table.
3: for all document d in D do
4: U ← empty list
5: for all feature extractor θ in Θ do
6: (f, v)← θ(d) and add to list U
7: end for
8: P [id(d)]← U
9: end for

10: return P

4.3.2 Transform

In this phase we transform the extracted feature values into a simpler form so that complex

search operations can be expressed as a series of equality searches. We compute search

signatures s form feature-value pairs and associate corresponding documents with s. This

association at the query stage can be used to infer the existence of a feature-value pair in a

document. Essentially here we define sets of transform functions T = {t1, .., tp}, where each

transform function is designed to generate search signatures from a feature value pair (f, v)

and Tf defines subset of transformation functions that can be applied to feature f .

With these transform functions T , we generate an inverted index I that is indexed by

search signatures and contains the list of document ids. For all the feature value pairs in
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P , we generate search signature stf,v ← t(f, v) where t ∈ Tf . We build document id list Vs

for all the unique search signature s that contains id(Di) if and only if there exists a feature

value pair (f, v) that is in Ui and at least one transformation function t that generates search

signature s. Finally we fill the inverted index I such that I[s]← Vs. In Figure 4.3 we show

such an example I, which is created from P of Figure 4.2. Here, search signature s1, s2,

s3, s4, s5 are generated from feature value pairs (fa, vα), (fb, vβ), (fb, vγ), (fa, vσ), (fa, vδ)

accordingly.

Search 
Signature Document ID List

(d) Inverted index,

Figure 4.3. Inverted index I, that maps search signatures to document ids.

Similarly, in our encrypted image storage application example, we define a transform

function tl that takes geographic location and document id as input and converts the loca-

tion information to mailing address using reverse address lookup service, takes the country

information and document id to construct a search signature using a collision-resistant hash

function.

Using such an extract transform model has several benefits over the ad-hoc model. The

proposed model helps us to organize the necessary computation into modules, which intern

increase development efficiency. The feature extractor functions can be reused in other

projects. Algorithm 2 describes the transform phase for building the inverted index.
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Algorithm 2 Transform algorithm for building the inverted index

1: Require: P = Extracted feature-value hash table, T = Transform function set
2: I ← empty hash table
3: for all document id id(d) in P do
4: for all feature-value pair (f, v) in P [id(d)] do
5: for all transformation function t in Tf do
6: s← t(f, v) and add id(d) to I[s]
7: end for
8: end for
9: end for

10: return I

4.3.3 Load

In this phase, we set up our encryption schema, encrypt the inverted index, and upload

the encrypted version into a file storage server Z. We initialize a master encryption key

K, three random constants C1, C2, C3, a secure pseudo random permutation function ϕ,

and a keyed pseudo random function H. Given a key, ϕ encrypts data, ϕ−1 decrypts corre-

sponding result, and H generates the authentication code of messages. The pseudo-random

permutation ϕ takes an encryption key and an arbitrary length binary string as input and

outputs a ciphertext. Given output ciphertext and corresponding encryption key, the inverse

ϕ−1 will output the original message back. We are also assuming that the output of ϕ is

indistinguishable under a non-adaptive and adaptive chosen ciphertext attack (IND-CCA1,

IND-CCA2). The keyed pseudo-random function H also takes an encryption key and an

arbitrary length binary string as input and outputs a fixed-length binary string.

In addition, we define a small synchronized cache C and an encryption key KC for en-

crypting the cache. C is always synchronized with storage server Z. Synchronization is

achieved by updating the server’s version after any change in the client’s version and before

updating the cache locally most recent version is downloaded from the server first. In C,

we store the document id list size of all search signatures of I, which is notated by C.freq.
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Later, we also use this cache to store information related to individual files to make the

query phase easier.

We divide all the document id lists in I into b length blocks and add padding to the last

block if needed. The value of b is determined by defining and minimizing a cost function

(described in Section 4.3.6). We generate trapdoors T sj ← H(K, s || j || C1) and Ks
j ←

H(K, s || j || C2) for jth block of document list of I[s]. We use Ks
j to encrypt block contents

and T sj as the key for encrypted inverted index E . So E [T sj ] ← ϕ(Ks
j , j

th block of I[s]).

To query the inverted index, later on, our system will regenerate these two trapdoors and

perform inverse operations to build the original document id list. In addition, we store

number of documents associated with a signature s in C.freq[s], then encrypt and upload

the cache. Algorithm 3 describes the operations necessary for load phase.

Algorithm 3 Load encrypted index

1: Require: K = Master key, I = Inverted index of search signatures, C = Synchronized
cache, KC = encryption key for cache, Z = File storage server.

2: b← optimize(I)
3: for all signature s in I do
4: blockss ← d |I[s]|b e
5: for j = 1→ blockss do
6: T sj ← H(K, s || j || C1), K

s
j ← H(K, s || j || C2)

7: sub← I[s].slice((j − 1)× b, j × b)
8: E [T sj ]← ϕ(Ks

j , pad(sub))
9: end for

10: C.freq[s]← |I[s]|
11: end for
12: for all trapdoor t in E do
13: Z.write(t, E [t])
14: end for
15: Csig ← H(KC || C3, 1)
16: Z.write(Csig, ϕ(KC , C))
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4.3.4 Query

In previous phases, we have created an encrypted inverted index and uploaded into file

storage server Z. Query and post-process phases are dedicated to querying the index and

returning proper output to the user. First, given a user query q, we extract and transform

it into a set of search signatures Q. We use the number of document ids per block, stored in

C.freq, to compute block counts, which in turn used to compute trapdoors Ks
j and T sj for

each block of search signatures. Using these trapdoors we retrieve and decrypt document

ids. Finally, the result is organized into a hash table R such that R[s] = I[s] for all s ∈ Q.

Algorithm 4 contains the detail operations of the query phase.

Algorithm 4 Query

1: Require: K = Master key, q = Query, b = block size, Z = File storage server
2: Q ← Extract and Transform q
3: for all search signatures s in Q do
4: blockss ← dC.freq[s]b

e
5: for i = 1→ blockss do
6: T sj ← H(K, s || j || C1), K

s
j ← H(K, s || j || C2)

7: L← Z.read(T sj )
8: add ϕ−1(Ks

j , L) in R[s]
9: end for

10: end for
11: return R

4.3.5 Post-process

In this step, we further process the result of the query phase to remove false positive entries.

Given the result set R from the query phase for query q, we remove the id of the documents

that do not match the original query. Therefore, R.remove(id(d)) if q(d) 6= True. A query

that only contains exact search features, this phase is optional.
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4.3.6 Optimal block size analysis

Block size has a direct impact on the performance of our proposed system. Larger block size

implies a waste of space for padding and smaller block size implies many blocks to process.

So we need to find an optimal value of block size b that keeps the overall cost to minimal.

In our construction for each block, we have a fixed cost and a dynamic cost that is related

to block length. We define fixed cost as α and co-efficient of dynamic cost β. The cost can

be in terms of time and size. Both linearly depends on block size in our construction. So

cost for a b length block is (α + β × b). Let, J (s) is |I[s]| meaning document id list size

for search signature s and total cost G(b) for blocking and encrypting given inverted index

I for block length b then

G(b) =
∑
s∈I

⌈
J (s)

b

⌉
(α + β × b)

We want to minimize the above function for b. However, it contains a ceiling function,

which can not be minimize by taking derivatives and equating to zero. So we approximate

the probability distribution of J , i.e., lengths of document id list in I. We assumed that,

distribution is Pareto distribution (Arnold, 1985), which is defined by probability density

function (PDF)

f(x|γ, xm) =
γxγm
x(γ+1)

and cumulative distribution function (CDF)

F (x|γ, xm) = 1− (
xm
x

)γ

where x is the random variable, γ is distribution parameter, and xm is minimum value of x.

In our total cost analysis for each J (s) smaller or equal b cost is exactly (α+ β× b) and

number of elements where J (s) ≤ b is equal to F (b). For elements where J (s) > b we can

approximate the total cost using expected value of J (s) . Finally, the cost function

G(b) = (α + βb)F (b) + E[J (s)]J (s)>b(
α + βb

b
)
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where E is expectation of probability distribution. Now we can compute the expectation by

integration.

G(b) = (α + βb)(1− (
xm
b

)γ) + (
α + βb

b
)

∫ ∞
b

γxγmx

xγ+1
dx

After preforming integration and several algebraic simplification we get the final form

G(b) = (α + βb)− (α + βb)xγmb
−γ + (γxγm

b−γ + 1

γ − 1
)(
α

b
+ β)

And the first order derivative is

G ′(b) = β − xγmβb−γ + (α + βb)xγmγb
−γ−1 − γxγmb−γ(

α

b
+ β)− γxγm

γ − 1
b−γ−1α

Now we minimize b by setting G ′(b) = 0 and solving the equation for b. In experimenta-

tion, we observe that method of moments estimation for xm and γ gives almost the correct

value.

4.4 Dynamic Document Addition

Here we are going to improve our algorithms to support the dynamic addition of documents.

Given a new document set D′ for addition, we first perform extract and transform to build

an inverted index I ′. Now we download and decrypt the cache C and compute the number

of blocks x, the number of empty spaces in the last block y from C.freq information for

signatures that are already in inverted index I. On the other hand, assign zero to x and

y for search signatures that we have not seen yet. If there is empty space meaning y > 0

then we fill the last block with new document ids. The rest of the document ids are divided

into b length blocks and encrypted with the appropriate key. Algorithm 5 describes dynamic

document addition in detail.
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Algorithm 5 Dynamic document addition

1: Require: D′ = Documents to add, K = Master key, C1, C2, C3 = Constants, b = block
size, KC = Encryption key for cache, Z = File storage server, Θ = Feature extractor
function set, T = Transform function set.

2: I ′ ← Transform(Extract(D′,Θ), T )
3: Csig ← H(KC || C3, 1)
4: C ← ϕ−1(KC ,Z.read(Csig)) // download and decrypt
5: for all signature s in I ′ do
6: if s in C.freq then
7: x← dC.freq[s]

b
e, y ← x× b− C.freq[s]

8: else x← 0, y ← 0
9: end if

10: if y > 0 then
11: T sx ← H(K, s || x || C1), K

s
x ← H(K, s || x || C2)

12: L← ϕ−1(Ks
x,Z.read(T sx))

13: Fill empty spaces in L
14: Z.write(T sx , ϕ(Ks

x, L))
15: end if
16: for j = 1→ d |I

′[s]|−y
b
e do

17: k ← j + x
18: T sk ← H(K, s || k || C1), K

s
k ← H(K, s || k || C2)

19: sub← I ′[s].slice((k − 1)× b+ y, j × b+ y)
20: Z.write(T sk , ϕ(Ks

k, pad(sub)))
21: end for
22: C.freq[s]← C.freq[s] + |I ′[s]|
23: Z.write(Csig, ϕ(KC , C)) // encrypt and upload
24: end for

4.4.1 Bandwidth Requirement Analysis

One might argue that, since we are performing all the complex operations on client side, so

encrypt the inverted index I like another document; then download, decrypt, and search in

the local inverted index in time of query to avoid all the complexities. However, such an

approach will increase bandwidth consumption for dynamically updating the index.

Let, {q1,...,q%} be % consecutive queries that user like to perform on a dynamically updat-

ing index, (i.e., new documents are added in between each query), |qi| be the length of query

qi, |E(qi)| be the size of blocks returned by query qi, |Y| be the maximum among {|E(q1)|,...,
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|E(q%)|}, |I| be the size of inverted index, |C.freq| be the size of cache required for storing

frequency of all the buckets. Total bandwidth cost for performing n queries ignoring the

addition cost

%|C.freq|+
%∑
i=1

(|E(qi)|+ |qi|) ≤ %(|C.freq|+ |Y|+ |qi|)

On the other hand, if we keep a local inverted index the bandwidth cost would be simply

%|I|. Since after each update index is updated and we need to download the recent version.

In practice |C.freq| + |Y| + |qi| � |I|. Also if we consider the cost of addition operation,

our system will outperform. Because during addition we are only adding new blocks not

updating the whole index. In contrast, the complete local inverted index needs to be sent

to the server after each addition. So building an encrypted inverted index always saves

bandwidth. However, the amount of savings depends on the dataset and query load.

4.5 Security

In this section, we formally prove the security of our proposed system. The cloud service

is managed by semi-honest Bob, who follows the defined protocol but may try to infer

private information about the document he hosts. Over the years, many security definitions

have been proposed for searchable encryption for the semi-honest model. Among those

simulation-based adaptive semantic security definition by Curtmola, at el., (Curtmola et al.,

2006) is widely used in literature. Later it is customized to work under a random oracle

model by Kamara, at el., in (Kamara et al., 2012). We adopt this definition to prove our

security model.

In our proposed static model, we are leaking encrypted document size, block length,

number of total blocks, trapdoor of blocks related to a search query information. In the

dynamic model, in addition to this information, we are leaking the length of newly added

encrypted documents, and associated search signatures. Also, note that the cache C can be
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considered as a document that is updated with a new length in every addition operation. This

does not leak any additional information because in the cache we are storing (1) document

id lists length information, which is some constant times number of search signatures and

(2) few internal information about documents, which is some constant times number of

documents. All of these atomic information are already leaked due to the index.

We will first define necessary patterns, history, trace, and view for our schema then prove

this schema satisfies adaptive semantic security.

Search Signature Pattern (µp): Suppose {o1, o2, ..., oη} is a set of η consecutive op-

erations on the encryption collection such that oi is a search or addition request. Each

operation oi has a set of associated search signatures denoted as osi . Specifically, if oi is

a search instance, it involves a single search signature osi = {si1}, If oi is an addition, it

involves a set of search signatures that are included in the whole dataset of new documents

such that osi = {si1 , ..., siς}. Then µp is a function such that µp((i, ρ), (j, `)) = 1 if siρ = sj`

and µp((i, ρ), (j, `)) = 0 otherwise, for 1 ≤ i, j ≤ η , 1 ≤ ρ ≤ |osi |, and 1 ≤ ` ≤ |osj|

Search pattern (Np): Suppose oi is a search request, cnt(si1) be the number of times

si1 occurs in the dataset. Then, Np(oi) = (cnt(si1)). Note that we are assuming that the

adversary can infer this count. However, we are not disclosing this information directly.

Addition Pattern (Ap): Suppose oi is an addition request for a document collec-

tion {Dι, ..., Dρ}, |Cx| denotes the bit-length for the encrypted form of Dx, {sj1 , ..., sjς} is

set of search signatures that are included in a new corpus, and cnt(sjι) denotes the num-

ber of documents associated with sjι in modified dataset. Then Ap(oj) = ({|Cι|, ..., |Cρ|},

{cnt(sj1), ..., cnt(sjς )})

History (Hη): Let D be the document collection and OP = {o1, ..., oη} be the consec-

utive search or addition requests that are issued by user. Then Hη = (D, OP ) is defined as

η query history.

Trace (λ): Let C = {C1, ..., Cn} be the collection of encrypted data items, |Ci| be the

size of Ci, µp(Hη), Np(Hη), Ap(Hη), b be the search signature, search, addition pattern for
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Hη, length of each block in encrypted inverted index respectively. Then λ(Hη) = {(|C1|,

...,|Cn|), µp(Hη), Ap(Hη), Np(Hη), b} is defined as the trace of Hη. Trace can be considered

as the maximum amount of information that a data owner allows its leakage to an adversary.

View (v): Let C = {C1, ..., Cn} be the collection of encrypted data items, E be the

encrypted inverted index, and Π = {Πo1 , ...,Πoη} be the trapdoors and encrypted values for

η consecutive requests in Hη. Then, v(Hη) = {C, E ,Π} is defined as the view of Hη. The

view is the information that is accessible to an adversary.

Adaptive Semantic Security for Dynamic SSE: SSE schema satisfies adaptive se-

mantic security in random oracle model, if there exists a probabilistic polynomial-time sim-

ulator S that can adaptively simulate the adversary’s view of the history from the trace

with probability negligibly close to 1 through interaction with random oracle. Intuitively,

this definition implies that all the information that is accessible to the adversary can be

constructed from the trace. Formally, let Hη be a random history from all possible history,

v(Hη) be the view, λ(Hη) be the trace ofHη. Then, scheme satisfies the security definition in

the random oracle model if one can define a simulator S such that for all the polynomial-size

distinguishers Dist, for all polynomial ploy and a large Λ:

Pr[Dist(v(Hη)) = 1]− Pr[Dist(S(λ(Hη))) = 1] <
1

poly(Λ)

where probabilities are taken overHη and the internal coins of key generation and encryption.

Theorem 1. The proposed scheme satisfies the adaptive semantic security.

Proof. We will show the existence of polynomial-size simulator S such that the simulated

view vS(Hη) and the real view vR(Hη) of history Hη are computationally indistinguishable.

Let vR(Hη) = {C, E ,Π} be the real view. Then S adaptively generates the simulated view

vS = {C∗, E∗, Π∗}
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S chooses n random values {C∗1 , ..., C∗n} such that |C∗1 | = |C1|, ..., |C∗n| = |Cn|. In this

setting, Ci is the output of a secure encryption scheme. By the pseudo-randomness of the

applied encryption, Ci is computationally indistinguishable from C∗i .

Given the documents per search signature (e.g., cnt(s)) and block length b, S computes

number of entries in E and generates that many (k∗i , v
∗
i ). Note that for every (ki, vi) in real

encrypted inverted index E there exists a (k∗i , v
∗
i ) in simulated encrypted inverted index E∗.

Here length of ki and k∗i is equal to the output length of pseudo-random function H. Simi-

larly, length of vi and v∗i is equal to b. Here, encrypted keys and blocks are computationally

indistinguishable from random values by pseudo-randomness of the applied encryption.

S simulates requests Πo1 , ...,Πoη according to their types

1) Πoi is a search request: We define Xs = {πs1 , ...,π
sd
cnt(s)
b
e} be the trapdoors

generated for search signature s. Suppose, Πoi = (Xsi1 , cnt(si1)) is a search request. Then

S copies cnt(si1) from Np(oi) to cnt(si1)
∗. Then if µp((i, 1), (j, `)) = 1 for any 1 ≤ j < i

and 1 ≤ ` ≤ |oj| then X ∗si1 = X ∗sj` . Otherwise X ∗si1 is set to d cnt(si1 )
b
e number of random

row-key from simulated encrypted inverted index E∗ such that those was not previously

selected during the simulation. In this setting, components of simulated and real requests

are computationally indistinguishable by the pseudo-randomness of the applied encryption.

Hence Πoi and Π∗oi are computationally indistinguishable.

2) Πoi is an addition request: Suppose, Πoi = ((Xsi1 , cnt(si1)), ..., (Xsiς , cnt(siς ))) is

an addition pattern, |Πoi | be the number of pairs.

For each of the pair individually (iterated with ρ, where 1 ≤ ρ ≤ |osi |) simulator S does

the following. First copy cnt(siρ) from Ap(oi) to cnt(siρ)
∗. Next, if µp((i, ρ), (j, `)) = 0, for

all 1 ≤ j < i and 1 ≤ ` ≤ |osj| meaning new search signature so copy d cnt(siρ )
b
e new random

row keys and values from E∗ to X ∗siρ such that those was not used earlier. However, things

get little complicated when there is at least one µp((i, ρ), (j, `)) = 1 meaning this search

signature has been seen earlier. Note that during addition phase client only needs to update
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the last block and add more blocks if necessary. For this simulator S needs to search in

revers find the largest j that is smaller than i where µp((i, ρ), (j, `)) = 1 That is the place

where siρ was last used. Now find cnt(sj`) either from Ap(oj) or Np(oj) depending on the

jth operation. Now cnt(siρ) − cnt(sj`) is the number of new documents that have search

signature siρ and S assigns b cnt(siρ )−cnt(sj` )
b

c new k∗ from E∗ that are not already used and

corresponding random v∗. Also S has to add one more row key-value pair (k∗, v∗) to for the

last block that’s being updated. S picks last element of X ∗sj` from so far generated Π∗ and

randomly generate a new value v∗ for that element too. In this setting, the constructed Π∗oi

is computationally indistinguishable from Πoi .

Since each component of vR(Hη) and vS(Hη) are computationally indistinguishable, we

can conclude that the proposed schema satisfies the security definition.

4.6 Application of ETLQP framework

As an application of our ETLQP framework, we built an image storage system that saves

encrypted images in cloud storage and built an encrypted index to search later on. Before

going into further detail of our ETLQP framework implementation we briefly describe Fuzzy

Color and Texture Histogram (FCTH) (Chatzichristofis and Boutalis, 2008), Eigenface (Turk

and Pentland, 1991), Locality Sensitive Hashing(LSH) (Indyk and Motwani, 1998), and

range query to exact query conversion mechanism (Faber et al., 2015). FCTH and Eigenface

are used for image similarity search and face recognition respectively and LSH is used for

dimension reduction. Finally, as the name suggests range query to an exact query conversion

mechanism is used to convert a range query in a defined range to a sequence of matching

query. These concepts are vital to the development of our system.
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Fuzzy Color Texture Histogram (FCTH) (Chatzichristofis and Boutalis, 2008) is an

histogram of image that combines texture and color information. It is widely used in content-

based image retrieval systems (CBIR) (Lux and Chatzichristofis, 2008; Chatzichristofis et al.,

2009; Yang et al., 2009; Chatzichristofis et al., 2010; Chatzichristofis and Boutalis, 2010).

In FCTH the texture information is represented by an eight-bin histogram derived via the

fuzzy system that uses the high-frequency bands of the Haar Wavelet transform. The color

is represented by a 24-bin color histogram computed like in the CEDD descriptor. Overall,

the final histogram includes 192 regions. Each of the 1600 image blocks is processed and

assigned to a region as in the CEDD. The final 192-bin histogram is also normalized and

quantized such that each bin value is an integer between 0 to 7 inclusive. FCTH of an image

can be considered as a vector with 192 dimensions and distance between FCTH vector of

images can be used to determine similarity among images.

Eigenface (Turk and Pentland, 1991) is a very well studied, effective yet simple technique

for face recognition using static 2D face image. It consists of three major operations - finding

eigenvectors of faces, finding weights of each faces, and recognition tasks.

Finding Eigenvectors. We start with M face-centered upright frontal images that are

represented as N ×N square matrices. Let, {Γ1, ... , ΓM} are N2 × 1 vector representation

of these square matrices, Ψ = 1
M

∑M
i=1 Γi is the average of these vectors, and Φi = Γi −Ψ is

computed by subtracting average Ψ from ith image vector.

Now eigenvectors ui of co-variance matrix C = AAT , where A = [Φ1 Φ2 . . .ΦM ], can be

used to approximate the faces. However, there are N2 eigenvectors for C. In practice N2 can

be a very large number, thus computing eigenvectors of C can be very difficult. So instead

of AAT matrix we compute eigenvectors of ATA and take top K vectors for approximating

eigenvectors ui, where

∥∥∥∥ui∥∥∥∥ = 1. The selection of these eigenvectors is done heuristically.

Finding Weights. Φi can be represented as a linear combination of these eigenvectors

Φi =
∑K

j=1wjuj and weights can be calculated as wj = uTj Φi. Each normalized image is
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represented in this basis as a vector Ωi =

[
w1 w2 . . . wk

]T
for i = 1, 2, . . .M . This is

essentially projecting face images into new eigenspace (the collection of eigenvectors).

Recognition Task. Given a probe image Γ, we first normalize Φ = Γ−Ψ then project

into eigenspace such that Ω =

[
w1 w2 . . . wK

]T
, where wi = uTi Φ. Now we need to find

out nearest faces in this eigenspace by er = min

∥∥∥∥Ω− Ωi

∥∥∥∥. If er < a threshold, chosen

heuristically, then we can say that the probe image is recognized as the image with which it

gives the lowest score.

In summary, face images are considered as a point in a high dimensional space. An

eigenspace consisting few significant eigen vectors are computed for approximating faces in

a training face dataset. Next, test face images are projected into the computed eigenspace.

Distances of test face images and all training faces images are computed. If any distance

is bellow a pre-determined threshold then those faces are considered a match for associated

test face.

Locality sensitive hashing is a technique widely used to reduce dimensions. The core

concept of LSH is to define a family of hash functions such that similar items belong to

same bucket with high probability. More specifically we utilized LSH in euclidean space and

adopted widely accepted projection over the random line technique described in (Andoni

and Indyk, 2008). Let, r be a random projection vectors, v be an input vector, o be a

random number used as offset, and w be bucket length parameter fixed by user. The bucket

id is computed by Round(v.r+o
w

) function. Finally, several such projection vectors are used

to generate several bucket ids for a single input vector. In this setting, nearby items will

share at least the same bucket with very high probability. In practice value of w and the

number of random projections are controlled to achieve the required success rate.

Range query to exact query conversion. We adopt the range query mechanism de-

scribed in (Faber et al., 2015). Let, a be a discrete feature that has a value ranging from 0
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to 2t−1, meaning it requires t bits to represent in binary. We first create a binary tree of t

depth representing the complete range. Each leaf node (at depth t) represents an element

in the range and we level all left edge as 0 and right edge as 1. So, the path from the root

to a leaf node essentially represent the binary encoding of that leaf. In the transform phase,

we convert an input value of the range to t feature-value tuples, where the feature is the

concatenation of field name, depth i and value is the binary encoding of inner node at depth

i. During the query phase given a range, we first find the cover as described in (Faber et al.,

2015), create the corresponding search signatures and perform the query.

4.6.1 ETLQP for image storage

To build an application using ETLQP framework described system section, the programmer

has to define proper extract and transformation functions. Load, Query, and Post-Process

phases remain the same. For our image storage software we consider four features location

- where the picture was take, time - when the picture was taken, texture and color - for

searching similar pictures, and faces - for face recognition. In our implemented system

queries of the first two features are equality search and later two are similarity search.

Similarity searches are difficult to perform since result not only contains exact matches but

also contains results that are similar. So, we need to have a similarity measure for the feature

in question. To accomplish such a similarity query we utilize LSH, which essentially helps

us to convert the query to a sequence of equality search. In addition, results of the LSH can

contain false positives. We need extra post-processing to remove those.

Extract. Location and time data are extracted from Exif (JEITA, 2002) meta-data. Exif

is a very popular standard for attaching image meta-data into image used by all popular

camera manufacturers. Camera with Global Positioning System (GPS) module can store

longitude and latitude of a picture taken into Exif data, which can be extracted easily using
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available libraries (Noakes, 2019). We use FCTH for similarity analysis and used open-source

implementation of the FCTH analyzer (Lux and Chatzichristofis, 2008). Finally, for face

recognition using Eigenface, we extract frontal faces from images using haar cascade (Viola

and Jones, 2001; Lienhart and Maydt, 2002) frontal face pattern classifier.

Transform. Now we define appropriate transformations for extracted features. The main

idea behind the definition of transformation functions is to make the query easier later on.

So definition of transformation functions is mainly guided by the query demand.

• Location. Location information in terms of longitude and latitude is difficult to use

in practice. We use OpenStreetMap’s reverse geolocation service (OpenStreetMap,

2019) to determine the address of latitude and longitude associated with the image.

To make queries easier later, we generate search signatures of six sub-features of the

address - full address, city, county, country, state, and zip.

• Time. Similarly, we break the created date of an image into five sub-features -

complete date, year, month, day of month, and day of the week. We generate search

signatures based on these sub-features. In addition, to support range query based

on date we convert the time into Unix timestamp that essentially represents seconds

passed from 1 January 1970 without considering the leap second. Then we divide the

time stamp by the number of seconds in a day (86400), which gives us the number of

days passed from the epoch. Finally, we build the range query binary tree with depth

20, which essentially is capable of covering dates till year 4840. Then we create the

feature value list as described earlier.

• Texture and Color. In the extract phase we extracted FCTH of the provided image,

which is a 192-dimensional vector. We can treat each dimension as different sub-

features but that will make it difficult to perform similarity search later on. Instead,
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we define a euclidean LSH schema that puts near elements into the same bucket and

use the bucket ids to generate search signatures.

• Face. We built an eigenface schema with extracted face images. Again to preserve

similarity we built a euclidean LSH schema with weight vectors of faces and store the

eigenspace related information into synchronized cache C. In particular, we store the

average face, selected top eigenfaces, and weights of all faces. Storing such information

is the major reason for defining the cache C.

Query and Post-Process. With previously defined extract and transform functions, we

can perform time queries, such as find images that are taken on specific year, month, day

of the week, day of the moth, or in a range of dates, etc. We can also perform location

queries, such as find pictures that were taken in a country, state, city, etc. In both of

these cases, we transform a query into encrypted search signatures and retrieve associated

encrypted document ids from the cloud storage server. Finally, we decrypt and display the

result directly to the user. On the other hand, for face recognition and image-similarity

query, we extract appropriate feature values from a query image and transform these values

into LSH bucket ids of previously defined LSH schema. We generate encrypted search

signature, retrieve encrypted document ids, and decrypt the result like date and time queries.

However, before showing results to user we remove false-positive results introduced by the

LSH schema.

4.7 Experimental Evaluation

In our proposed design we have two components client and server. Client processes images,

performs cryptographic operations, and produces an encrypted inverted index that is stored

in the server. In query phase client retrieves partial index from the server based on the user

query.
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ETQLP client is written in Java using several other libraries for image feature extraction.

Cryptographic operations are performed using the Java Cryptographic Extension (JCE)

implementation. During our experimentation, we execute the client program in a computer

with Intel(R) Core(TM) i7-4770 3.40GHz CPU, 16GB RAM running Ubuntu 14.04.4 LTS.

Our implemented client can store encrypted inverted index into different types of servers.

- File storage server in local network. We developed a very simple web-based

storage service that has two endpoints file read and file write. Our server is written in

Python (v2.7.6) using Flask (v0.10.1) microframework and files are stored in a MongoDB

(v3.2.0). We deployed our local storage server in a machine with Intel(R) Xeon(R) CPU

E5420 2.50GHz CPU, 30GB of RAM running CentOS 6.4. In addition, our client computer

is also in the same network. Here, file path is search signature of encrypted inverted index

E and file content is encrypted document id list.

- Amazon S3 (Amazon, 2019) is a very popular commercial object and file storage sys-

tem, which provides easy to use representational state transfer (REST) application program

interface (API) for storing, retrieving and managing arbitrary binary data or file. Amazon

also provides a very extensive software development kit (SDK) for building applications to

utilize its services. In our implementation, search signatures of encrypted inverted index E

are keys of S3 objects and content of the objects are associated encrypted document id list.

- Personal file storage services. Among the popular commercial personal file storage

services, we implemented capabilities to store inverted index into Dropbox (Dropbox, 2019a),

Box (Box, 2019a), and Google Drive (Google, 2019a) because of available open-source SKD

on these platforms. Here, each entry in encrypted inverted index E is saved as separate file,

where file name is encrypted search signature and file content is encrypted document id list.

Due to rate limitations (Dropbox, 2019b; Box, 2019b; Google, 2019b) we could not perform

extensive analysis on these platforms. However, a typical user adding images from time to

time will not have any trouble using any of these platforms as a cloud file storage server.

We reached the rate limit due to the repeated nature of our experiment.
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In Table 4.1, we list the throughput of each of the servers. We compute the system

throughput by upload and downloading 100MB in the storage servers. We observe that

local server performs extremely well in case of download because of MongoDB’s advanced

cache management, which keeps the recently used data in RAM to improved performance.

In addition, in our smaller-scale experiments we observed that the performance of personal

storage server scales according to this throughput ratio.

Dataset. We use Yahoo Flickr Creative Commons 100 Million Dataset (YFCC100M) pre-

sented in (Thomee et al., 2015), which contains basic information of 100 million media

objects, of which approximately 99.2 million are photos and 0.8 million are videos, all of

which carry permissive creative commons license. We have randomly selected 20109 images

and downloaded the original version of these images. Size of this random dataset is 42.3GB,

average file size is 2.15MB, the number of faces detected 7027, and 4102 images have latitude

and longitude embedded in EXIF data.

Face Detection Accuracy. Our constructed dataset is randomly selected and unlabeled.

As a consequence the correctness of our face detection system remains unmeasured. So

we perform face detection on two know face datasets Caltech Faces (Weber, Weber) and

Color FERET (Phillips et al., 1998, 2000). Caltech Faces dataset contains 450 frontal face

images each containing picture of an individual. Our system detected 431 of those correctly,

yielding a 95.78% accuracy. We also observed that most of the failed images are too dark to

detect any face. Color FERET dataset contains a total of 11338 facial images, which were

collected by photographing 994 subjects at various angles. Since our face detection system

Table 4.1. Throughput of different servers
Data Set Download throughput Upload throughput

Local 66.049 13.589
Amazon-S3 17.096 20.646
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Figure 4.4. Overhead of encryption and decryption during upload and download.

detects frontal faces only, we extract frontal face images with fa and fb suffixes. We found

that there are a total 2722 such images. Our face detection system successfully detected

2459 images, yielding 90.33% accuracy. Almost all the failed images are too dark or subjects

wore glasses.

Experiments. Before performing any experiment for the proposed ETLQP framework, we

first compare the performance of an encrypted image storage system with an unencrypted

one to observe the overhead of encryption. We randomly select a few images, encrypt and

upload those images. Then we download, decrypt and save those files again and measure the

performance. We perform this experiment with local storage server and in the client we used

a thread pool with 2 threads to parallelize the operations. Encrypted files are slightly larger

than the unencrypted version because we padded the input file and added a 256-bit message

authentication code. So overall size overhead is very negligible. We observe on average

10.09% increment in execution time for encrypted upload compare to unencrypted upload,

illustrated in 4.4(a). Similarly we observe on average 13.06% increment in execution time

for downloading encrypted file and decrypt, compare to unencrypted download, illustrated
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Figure 4.5. Size of the unencrypted index, encrypted index, and cache vs. number of files

in 4.4(b). So we conclude that encryption does not add significant overhead for an efficiently

implemented client.

Now, we measure the performance of different phases of our framework for varying the

number of randomly selected images from the above dataset. We measure the performance

of different phases of our framework for varying numbers of randomly selected images from

the above dataset. The horizontal axis of most of the reported graphs is the number of

randomly selected images used to build the index and the vertical axis is the observation.

We repeat each experiment for at least 3 times and report the average observation value.

We extracted four features of the images created date, location, FCTH vector, and faces.

For created date feature we generated search signatures of day of the week, day of the month,

month, year, week of week year, and a combination of year, month, and date. Also we gen-

erated range query related signature to perform arbitrary range query on date. For location

feature, we first reverse looked up the address of latitude, longitude extracted from images

using open street map (OpenStreetMap, 2019)Next we created search signatures based on

city, state, county, country, zip code and full address. FCTH vector is extracted from all the

images with Lucene image retrieval (Lux and Chatzichristofis, 2008) implementation. We
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Figure 4.6. Time required for building the index for different number of images.

detected frontal faces using OpenCV implementation of haar cascade classifier, converted

all the face images to median face size, built an eigenface classifier on the detected faces,

and store the computed weight vector of all the faces as an image feature. In Figure 4.5, we

illustrate the size growth of unencrypted inverted index, encrypted inverted index, and syn-

chronized cache. The growth is linear, which implies index size increment is proportional to

the number of files added. Moreover, in our experiment, we observed that for 20000 images

encrypted inverted index size is only 7.05MB, which is about four average size images in our

dataset. So the size overhead of our proposed system is very low.

We also observe that feature extraction is the most time-consuming phase of our system.

Figure 4.6(a) illustrates required time for extracting features. We observe that face detection

and extraction time is the dominating factor in this phase. It requires 464.54 minutes to

detect and extract faces from 20000 images in a sequential manner, averaging about 1.39

seconds per image. In addition, the other three features take 85.87 minutes for 20000 images,

averaging 0.26 seconds per image. Even though it looks like a long time for a lot of images

but the time required for individual images is very little. Furthermore, these experiments

are done in a sequential manner. A multi-threaded implementation will certainly reduce

the overall time. In addition, in this prototype, we implemented a separate program to call
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Figure 4.7. Time required for uploading the index for different number of images.

native OpenCV API to detect faces and communicate the results back to the main process,

which added extra overhead. In contrast, the transform phase is one of the fastest phase in

our implementation. Here, extracted feature values are transformed into an inverted index

of search signatures and document ids. We observed that the growth is almost linear and

for 20000 images it only requires 696 milliseconds, shown in Figure 4.6(b).

The next phase in our framework is load, where we encrypt and load the inverted index

into a cloud storage server. In our experiments, we load the encrypted index into (1)

Local server and (2) Amazon S3. We also split the encrypted index into 1MB splits and

during query processing we downloaded the block that contains the required search signature.

We observed that this blocking makes the loading process a bit faster but random query

processing time remained almost the same. In Figure 4.7, we show the time required for

encrypting and loading the inverted index into the local and Amazon S3 servers. For 20000

images it requires 20.52 seconds to encrypt and load the entire inverted index into the local

storage server and 5.65 minutes to complete in the Amazon S3 server. Furthermore, the

time growth is linear due to the linear growth of index size.
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Figure 4.8. Location query execution time

After loading the data into cloud storage server we perform queries on extracted features.

For the location feature, we perform a query with five randomly selected states, cities, and

full addresses. In Figure 4.8, we show the performance of location queries on different

numbers of randomly selected images from the dataset. It is interesting to observe that the

query by full address performs fastest among all three query categories. Query by state

takes longest to finish and query by city performs in between. This is because time requires

to finish a query is proportional to the number to blocks fetched and processed. Very few

images are like to have the same full address however more images likely to have common

state or city. As a consequence, we observe the above performance. Similarly, for date

feature we randomly select five year, month, date(YMD) combinations, date range, months,

and weeks. Query by year, month, date combination and range query by date takes the

smallest amount time. In contrast, query by month takes the longest and query by the week

in between. In Figures 4.9(a) and 4.9(b) we illustrate the performance of different types of

date query vs the number of files.

For the FCTH feature, we randomly select five images among input images, get FCTH

vectors, then perform the same euclidean LSH transformation defined in the transform phase
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Figure 4.9. Time required for date query vs number of files.

to get the search signatures. For face feature, we randomly select five faces and compute

weights with eigenvector information stored in the cache, then perform euclidean LSH trans-

formation and get search signatures. Using these search signatures we get matching images.

Finally, we remove images that are too far from the query image. Determining the accu-

racy of our proposed system for these two features is difficult since the dataset is unlabeled.

However, we can estimate the performance with experimentation as shown in Figure 4.10(a).

FCTH and face query both takes significantly longer than location and date query, this is

due to the nature of these features, extra LSH transformations, and result post-processing.

In our experiment we set up a euclidean LSH schema with 4 random projections. For the

FCTH feature, each random projection line is divided into 20 unit length buckets and during

query time we search we query for images that have distance less than 8 units. For 20000

images we observed 78.4% precision and 16.6% recall. LSH parameters can be adjusted ac-

cording to the needs of the application. Our experiments give a general idea of performance

overhead of different types of complex queries.

We also perform four conjunctive combinations of queries. We perform different types

of queries individually then intersect the result to get the final result. First combination is
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Figure 4.10. Time required for different type of complex queries vs number of files.

date and location query combination, where we combine location queries with date queries.

The second combination is date, location, and FCTH query, where we combine three types

of queries together. The next combination is date, location, and face query, which is also

three type queries. The fourth combination is date, location, FCTH, and face query, which

combines all the features our system can extract. As shown in Figure 4.10(b) fourth combi-

nation takes longer to perform and the first combination takes the smallest amount of time.

This is because location and date queries are individually very fast compared to the other

two types of queries.

Finally, we compared the performance of our framework with a naive implementation.

In the naive implementation the extract and transform phases remain the same. However,

the load and query phase is different. In the naive implementation, we encrypt and upload

the inverted index as a single file. During the query phase, we download and decrypt the

whole encrypted index to perform queries.

In Figure 4.11, we illustrate the data transfer required to perform a year-month-date(YMD)

query using our proposed framework and naive implementation. As the number of query

increases data transfer requirement increases liner to the index size. On the other hand,
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Figure 4.11. Naive query time

in our framework initial index loading phase requires loading the encrypted inverted index

than on subsequent query the data transfer is very little.

4.8 Conclusion

In this chapter, we addressed the problem of searchable encryption with a simple server that

can support complex queries with multimedia data type. We made several contributions

including an extensible general framework with security proof and its implementation. Our

defined extract, transform, load, query, and post-process (ETLQP) framework can build

an efficient searchable encryption scheme for complex data types (e.g, images). With this

framework we can perform very sophisticated queries, such as face recognition, without

needing cryptographic computational support from the server. Our implementation shows

small overhead for building encrypted search index and performing such complex queries.

In addition, we also show that the overhead of general cryptographic operations is negligible

compared to other necessary operations of a cloud-based file storage system.
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CHAPTER 5

SGX-BIGMATRIX: A PRACTICAL ENCRYPTED DATA ANALYTIC

FRAMEWORK WITH TRUSTED PROCESSORS1

5.1 Introduction

In this chapter we present a generic data analytics framework in a cloud computing envi-

ronment using SGX. We consider two setups: (1) Single user scenario, where a single end

user has a large amount of data and wants to perform data analytics tasks using cloud

computing infrastructure. However, the user does not trust the cloud provider with data

and wants to perform operations on the encrypted data. (2) Multi-user scenario, similar to

secure multi-party computation, where multiple users possess data that they want to use

together to perform complex data analytics tasks. However, these users do not trust other

participants with their input data, but they trust a central SGX based system due to its

security guarantees and willing to share the output of the analytics operations with every-

one. For example, such a setup can be used among law enforcement organizations to build

threat detection models without actually sharing information other than the final result.

In our framework, we built a programming language that allows data scientists to build

data analytic programs with basic operations. Our Python inspired language is designed to

vectorize computations to enable simple and efficient representation of many practical data

analysis tasks. Furthermore, to enable such vectorized computation, we build an efficient

matrix abstraction for handling large data. To that end, we propose BigMatrix abstraction,

which handles encrypted matrix data storage transparently and allows data scientists to

access data in a block-by-block manner with integrity and privacy protection. In addition,

1© Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, and Latifur Khan. 2017. SGX-BigMatrix: A
Practical Encrypted Data Analytic Framework With Trusted Processors. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’17). ACM, New York, NY, USA,
1211-1228. DOI: https://doi.org/10.1145/3133956.3134095
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our programming language does not allow certain constructs such as “if-statement” that

may make it hard to create efficient oblivious executions. For example, a data scientist who

wants to compute the average income of individuals may typically write a for-loop with if

statements to compute such average (see the listing below).

sum = 0, count = 0

for i = 0 to Person.length:

if Person[i].age >= 50:

count ++

sum += Person[i]. income

print sum / count

With our framework, such a computation needs to be done using Python NumPy (NumPy,

2019) or pandas (Pandas, 2019) like constructs with vectorization. In the listing below, bi-

nary vector S that returns 1 for ith tuple when the selection condition is satisfied (‘age’

> 50), which is used for computing the average income using the element-wise product op-

eration. As we discuss later, such a vectorized computation automatically hides important

sensitive information such as data access patterns.

S = where(Person , "Person['age '] >= 50")

print (S .* Person['income '] ) / sum(S)

By designing, efficient and oblivious matrix sorting, selection, and join operations, com-

bined with simple for-loops, we show that all most all of the practical data analytics tasks

can be programmed and executed in our framework. Furthermore, during our experimental

evaluation, we observed that block sizes and the order of certain operations (e.g., SQL like

operations) has an impact on execution time. As such, we proposed an optimization mech-

anism with the programming abstraction, that will find the optimum execution policies for

a given sequence of basic operations. In addition, to utilize our proposed data analytics

framework, we have provided specific protocols to load code and data, provision and execute
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program, and distribute the result. Furthermore, we emphasize on building data oblivious

system, where code execution does not depend on data. Instead of using generic com-

plex Oblivious RAM (ORAM) algorithm (e.g., (Stefanov et al., 2013)) to hide data access

patterns, we leverage our knowledge of the vectorized computation algorithms to provide

operation specific but very efficient oblivious algorithms. We have made all of our individual

operations to be data oblivious and provided a theoretical proof that combination of such

operations remains oblivious. As a result, an adversary cannot learn extra information based

on data access alone.

Contributions The main contributions of this chapter can be summarized as follows:

• We propose a generic framework for secure data analytics in an untrusted cloud setup

with both single user and multi-user settings. Compared to existing work that leverages

trusted processors (e.g., relational database system (Arasu et al., 2013; Bajaj and Sion,

2014), map-reduce (Schuster et al., 2015), sql execution on spark (Zheng et al., 2017),

etc.), to our knowledge, we are among the first to provide a high level python inspired

language that allows efficient, generic, and oblivious execution of data analytics tasks.

• We present BigMatrix , an abstraction for handling large matrix operations in a data

oblivious manner to support vectorization (i.e., represent various data processing op-

erations as matrix operations).

• We also provide a programming abstraction that can be used to execute a sequence of

commands obliviously with optimum cost. We also theoretically prove that combina-

tions of oblivious methods remains oblivious.

• We have implemented a prototype showing the efficiency of our proposed framework

compared to existing alternatives.
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5.2 Secure Data Analytics Framework

Processing a large amount of data with Intel SGX is particularly difficult because of the

limited memory of a given enclave. In current SGX processor we can allocate at most about

90MB of dynamic memory inside an enclave. In addition, as discussed in Section 3.3, data

access patterns during encrypted data processing could also leak significant information.

Furthermore, from our own experience, we observe that Intel SGX development life

cycle is somewhat time consuming. We first need to divide the whole program into two

components - trusted and untrusted parts with defined entry points. Next, we have to

carefully implement the required algorithms in trusted part in C/C++. Finally we have to

deploy into a SGX server, verify the loaded code, provision secret, and finally run the code.

However, in modern data analytics, we observe that data scientists tend to prefer interactive

tools. In fact, popular analytical platforms (such as R (R, 2019), Octave (Octave, 2019),

Matlab (Matlab, 2019), Apache Spark (Spark, 2019), etc.) offer REPL (Read-Eval-Print

Loop) environments where users can perform operations on data, get instant feedback, and

repeat the whole process. In a recent survey (King and Magoulas, 2016) on data science

practitioners, top 3 preferred programming languages for data scientists are, R, Python,

and SQL. Furthermore, only 9% of the data scientists in the survey use C/C++ for data

analysis. One major reason behind this might be, easy data exploration and visualization is

often more important than writing the most optimized solution.

We also observe that complex data analytics tasks can be expressed as basic matrix

operations if the data is represented as a matrix. In fact, entire language and analytical

stacks, such as, Matlab (Matlab, 2019), Octave (Octave, 2019), NumPy (NumPy, 2019),

and Pandas (Pandas, 2019), has been proposed around matrix operations. Moreover, basic

matrix operations, such as, multiplication and transpose are by definition data oblivious.

In light of these observations, we propose an efficient and interactive framework to han-

dle large encrypted datasets for generic data analytics tasks by leveraging the Intel SGX
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instruction set. Our main objective is to bring matrix based computation into secure pro-

cessing environment in a way that would allows us to perform any matrix operation on large

encrypted matrices. So we propose BigMatrix Runtime, and at the core we have BigMatrix

abstraction that split a large matrix into a sequence of smaller ones and performs individual

matrix operations using smaller block. BigMatrix handles the blocking and encryption of the

small block automatically and transparently. In addition, we add other key operations, such

as, sorting and selection, on top of BigMatrix abstraction to support most data analytics

computations.

5.2.1 Setup and Threat Model

In our framework, we consider a setup where a single participant or multiple participants

are connected to an Intel SGX enabled server. The server is assumed to be controlled by an

adversary, who can observe the main memory (RAM) content and main memory processor

communications. Furthermore, the adversary can delete/modify the stored data, provide

wrong data, and stop the execution of the enclave. At the same time, due the capabilities

of the Intel SGX, we assume that the attacker cannot modify the code that is running in

the enclave.

Participants do not trust each other with their data but they want to execute a program

that will perform some data analytics task over all the participants’ data. Also, we assume

that the participants are not sending invalid datasets or aborting the process abruptly. In

addition, each user has the capability to verify that the server has loaded the proper code.

If the server does not load the proper code, participants will be able to detect the deviation.

All the communications between the server and the participants are done over a secure

communication channel, such as, Https. We also assume that the owner of the server is not

colluding with the participants.
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SGX Server

Figure 5.1. General setup of our system - one or more users using SGX based server for data
analytics.

In our framework, given the attacker capabilities, our goal is to detect any tampering by

the attacker and limit information leakage during the data analytic task execution process.

Furthermore, we want to make the framework suitable for multi-user setting where different

parties can combine their data and build collaborative model. To achieve these goals, our

proposed secure data analytics framework had three distinct phases: 1) Code agreement

and loading phase that allows multiple parties to agree on the common task that will run

on their joint data, 2) Input data and encryption key provisioning phase that allows data

encryption and key sharing, 3) Result distribution phase that provides the computation

result to multiple users.

5.2.2 Communication Protocols

Code agreement and loading phase To facilitate communication among multi-parties,

we assume that the participants know each other’ and the SGX server’s public key. This can

be achieved by participating in an already existing public key infrastructure. In addition,

we are assuming there exists a broadcast mechanism, where any participants including the

server can broadcast messages to every other participant.
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Let, p be the number of participants, Pi be the ith participant, K
(i)
pub be the public

key of participant i, K
(i)
pri be the private key of participant i, K

(s)
pub be the public key of

the central server, K
(s)
pri be the private key of the central server, C be the code that all

the participants wants to execute, H(k,m) be an authenticated hash (HMAC) function that

creates MAC of a message m with key k, Sign(Kpriv,m) be a signing function that generates

fixed length signature s of message m with a private key of an asymmetric key pair, and

V erify(Kpub, s,m) be a verification algorithm that verifies signature s of message m with a

public key of an asymmetric key pair.

The sequence of operations that participant Pi performs in this phase is the following:

• Generate a signature for the code C with a randomly generated nonce ri as follows,

σi = 〈si, ri〉 = 〈Sign(K
(i)
pri, C||ri), ri〉

• Broadcast σi to all other participants

• Next get all other participants signatures, i.e., get σj for j = {1, ..., p} and j 6= i

• Verify by executing V erify(K
(j)
pub, sj, C||rj) for all j except i. If any of the signature

fails then abort the protocol and broadcast the abort message

At this stage all the participants have agreed on the same code C. Now we are ready to

start the SGX loading

• One of the participant uploads C and {σ1..σp} to the SGX server

• The server verifies all the {σ1..σp} as previously

• Next, the server creates the enclave, i.e., loads the trusted part of the code into SGX

• Generates the signature of the enclave from mrenclave register call
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• Inside the enclave generate asymmetric key pair

Kenclave
pub , Kenclave

pri

• The server generates the following λi for all the participants Pi and send to participants

λi = 〈Sign(Kenclave
pub , C), ESig, φ(K

(i)
pub, K

enclave
pub ||Ki||ri), ri〉

• The server also generates a random session key for this execution Ks, which will be

used for further computation in this session

• Each participants gets λ that they decrypt with their private key and get Ki

Input data and encryption key provisioning Once direct key establishment with SGX

server is done, we are ready to send data to the server.

• Now participant i generates a random symmetric key Ki and encrypts the key with a

key derived from nonce n from previous step

• Participant i then encrypts the data with Ki and uploads to the SGX server

Result distribution Upon finishing the code execution the SGX server will distribute

the result, which is encrypted with recipient’s public key Ki.

5.2.3 Overview

BigMatrix Runtime has two major components: 1) BigMatrix Runtime Client, where a

user provides input data and tasks to perform on the input data, 2) BigMatrix Runtime

Server, which interprets user’s commands and performs the requested tasks. Before going

into the details of each component, we first provide a top-level overview of code execution

in BigMatrix Runtime.
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Figure 5.2. Framework Overview.

A user first makes sure that the server is started properly with secure enclave code and

provision the enclave with proper secret keys using proposed protocols. Next, the user

provides input program and data to the BigMatrix Runtime client, which uses a compiler

to compile the program into execution engine compatible code and perform error checking.

The client also encrypts the data using the proper key. Next, the client sends the code and

encrypted data to Service Manager. Service Manager next performs block size optimization

and loads encrypted data in the enclave with optimum block size information. Then service

manager starts the execution engine that performs the user specified operations. Once the

operation execution has been finished Service Manager sends enclave generated data back

to the client, which later displays the result back to the user.

BigMatrix Runtime client consists of two components: a) Client and b) Compiler. Big-

Matrix Runtime server consists of six logical components: a) BigMatrix Library, b) Execu-

tion Engine, c) Compiler, d) Block Cache, e) Block Size Optimizer, and f) Service Manager.

In the rest of this section, we explain each of these components.

5.2.4 Key Operations of BigMatrix Library

At the very bottom layer, we have BigMatrix library, which contains sets of operations on

our proposed BigMatrix abstraction. A BigMatrix is essentially a matrix of smaller matrices.
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Basically, we compute a specific block size that we can fit into SGX enclave and split a large

input matrix into smaller blocks and perform operations using these blocks. This abstraction

is needed since SGX is a memory constrained environment.

We have defined few basic functions in BigMatrix library, which we later use to build

more complex operations. Our defined functions falls into the following five categories:

1. Data access operations a) load(participant id, mat id): load matrix with

mat id from the storage, which is encrypted with session key of participant, partici-

pant id. b) publish(A): publish the matrix A for all the participants. c) Partial access

operations: get row(A, i), set row(A, i, r), get column(A, j), set column(A, j, c),

get element(A, i, j), set element(A, i, j, v).

We defer the discussion of how we serialize, encrypt, store, and load the BigMatrix

in Section 5.2.9, once we define other relevant components of the system.

2. Matrix Operations a) scalar(op, A, value): perform scalar operation op on each

element of input matrix A and return the output, where op is a binary operation such as

addition, multiplication, and, or, etc., A is a BigMatrix and value is numeric value. b)

element wise(op, A, B): perform element wise operation op on two big matrices and

return the result. c) multiply(A, B): perform matrix multiplication of big matrices A and

B. d) inverse(A): perform inverse of big matrix A. e) transpose(A): create the transpose

of big matrix A.

3. Relational Algebra Operations a) where(A, condition): perform basic selec-

tion operation on A for a given condition and return a 0-1 column matrix. b) sort(A,

columns, direction): sort the rows of matrix A using bitonic sort. c) join(A, B, condi-

tion, k): perform SQL like join of A and B based on condition. k is a parameter to ensure

obliviousness, which we discuss in Section 5.3.9. d) aggregation(A, commands, columns):
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perform basic aggregation on A on columns. Allowed aggregation commands are sum, av-

erage, count, min and max. We also implemented argmax(A, columns) and argmin, which

provide the index of highest and lowest value row in the matrix.

4. Data generation operations a) rand(m, n), zeros(m, n), ones(m, n): generate a

BigMatrix of size m × n containing uniform random numbers, zeros and ones respectively.

b) eye(n): generate an identity matrix of n × n.

5. Statistical Operations a) norm(A, p): compute p-norm of the vector (n× 1 matrix)

A. b) var(A): compute variance of the vector A.

All the operations in our BigMatrix library also have pre-defined trace, which is the

amount of information leakage due to performing the operation. For example, the multiply

operation leaks the information about the size of the matrix A and B. We refer readers

to Section 5.3 for more internal details including trace and cost of important BigMatrix

operations.

5.2.5 Compiler and Execution Engine — Programming Abstraction

As stated earlier, quick and secure data analytical development cycle is a major target of

the proposed framework. To that end, we define a compiler and execution engine that can

process and execute code, which is written in a python-like language. The execution engine

is part of our trusted environment and can interpret assembly-like instructions, such as, C

= multiply(A, B). On the other hand, the compiler resides outside the enclave and creates

execution engine compatible code from our custom language, which is inspired by languages

such as python and octave. The main reason behind such a split architecture is to reduce

the size of TCB (trusted computing base). There is no regular expression or context free

grammar functionality in SGX library. So if we want to support interactive computation in
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any language we would need to bring in the complete grammar processing library into the

TCB, which increases the risk of introducing potential vulnerability through bugs of these

libraries. On the other hand, we could build a parser that outputs code into X86 assembly

architecture and put more simplified execution engine. However, we avoided this option

because traditional assembly instruction set has complex branching instructions that are

very hard to convert to the equivalent data oblivious version. Furthermore, the instruction

set is highly restricted to a fixed set of registers, which is not the case for our execution

engine.

Our compiler is divided into five components: Lexical analyzer, syntax analyzer, semantic

analyzer, optimizer, and code generator. Lexical analyzer takes the input file and outputs

a stream of tokens. Syntax analyzer takes the token streams and creates a syntax tree

representing the input source code. During syntax tree creation syntax analyzer also lists any

syntax errors. Semantic analyzer analyzes the syntax tree and checks for semantic mistakes.

One of the semantic tests that we perform is matrix conformability (Hohn, 2013), where

we test operand matrices whether they have proper dimensions for intended operations. In

this stage, we also perform a sensitive data leakage analysis, where we check if any sensitive

information is leaking as a side effect of some operations. For a given program, we define

the non-sensitive information as: (a) input size, and (b) constants in the input program.

On the other hand, we also know the trace (set of values per operation that is disclosed)

of all the operations in the input program. Semantic analyzer checks for items in the trace

that is not non-sensitive and warns users of possible information leakage. For example, our

semantic analyzer will raise error for the following input code.

X = load(0, 'path/to/X_Matrix ')

s = count(where(X[1] >= 0))

Y = zeros(s, 1)

publish(Y)
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Because, here the value of s is in the trace of function zeros but the value is not in the non-

sensitive data list. Next, optimizer performs few compile time optimizations, such as basic

query optimization (detail in Section 5.2.8), and matrix multiplication order optimization.

Finally, code generator takes the syntax tree and generates execution engine compatible

code. In addition, our compiler also outputs complete trace of a input program so that

programmers can easily understand information leakage.

The execution engine can run in two modes: interactive and non-interactive. In the

interactive mode, a user loads the enclave, verifies, starts a session, provides sequence of

instructions, and closes the session at will. So the system does not know all the instructions

to be executed. In this mode, the values of variables are retained until user explicitly unset

it. In non-interactive mode, the user provides completed tasks to be executed and the

compiler generates necessary unset commands depending on the last used instructions.

Our framework supports variables of types int32, int64, double, BigMatrix of different

types, and fixed length strings. The language is not strictly typed, i.e., during initialization

a user does not have to specify the type of a variable. Our system can handle fixed length

loops and we are assuming that the number of loop iterations can be leaked to the adversary

(e.g., constant or some known value, such as rows, columns, block size). In addition, we also

protect intermediate data tampering. We keep an internal table of matrix id and header

MAC (message authentication code) of matrices in a computation. So, if an operating system

sends invalid data (i.e., an active attack, or unintentional data corruption), our execution

engine will be able to detect it. We discuss our MAC generation in Section 5.2.9.

Linear Regression

Now we provide an example on how our framework could be used to execute fundamental

data analytics tasks. Linear Regression is an approach for modeling the relationship between

a scalar dependent variable y and one or more independent variables (Lai et al., 1978). Let,
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m be the number of inputs, X be the training dataset, Y be the output of training dataset,

X(j) and Y (j) be the jth training set and class respectively, Θ be the regression parameters,

and ŷ be the predicted class of test input x, then

ŷ = ΘTx

where, Θ = (XTX)−1XTy.

In our programming language, we can compute the Θ using the following code snippet.

x = load(0, 'path/to/X_Matrix ')

y = load(0, 'path/to/Y_Matrix ')

xt = transpose(x)

theta = inverse(xt * x) * xt * y

publish(theta)

Our compiler will convert the above code snippet into the following sequence of instruc-

tions that can be executed by our execution engine.

x = load(0, X_Matrix_ID)

y = load(0, Y_Matrix_ID)

xt = transpose(x)

t1 = multiply(xt , x)

unset(x)

t2 = inverse(t1)

unset(t1)

t3 = multiply(t2 , xt)

unset(xt)

unset(t2)

theta = multiply(t3, y)

unset(y)

unset(t3)

publish(theta)
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Again if the code ran in the interactive mode, our compiler would not generate the unset

instructions. In this case, the leaked information to adversary is the size of x and y matrices

and sequence of operations. We discuss the security guarantees of our framework in more

detail in Section 5.4.

PageRank

PageRank is a popular algorithm to measure the relative importance of a node in a connected

graph (Page et al., 1999). It was originally used to measure the importance of hyperlinked

web pages in Word Wide Web. The simplified version of the algorithm can be expressed as

PR(u) =
∑
v∈Bu

PR(v)

L(v)

where u, v are nodes in a connected graph, PR(v) is PageRank of v, Bu is a set of nodes

that links to u, and L(v) is number of links from v. Finally, we iterate multiple times until

the values converge. Interestingly, we can express the computation in terms of basic matrix

operations using a technique called power method. Also, to reduce the information leakage

through iteration required to converge, we run the update step a fixed number of times. In

our programming language, we can write the code as follows

M = load('path/to/adjacency_matrix ')

d = 0.8 // damping factor

N = M.rows

v = rand(N, 1)

v = v ./ norm(v, 1)

M_hat = (M .* d) + ones(N, N) .* (1 - d) / N
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for _ = 1 to 40:

v = M_hat * v

publish(v)

The corresponding execution engine code is as follows. For simplicity we are skipping

the unset methods here.

M = load(adjacency_matrix_id)

d = assign (0.8)

N = assign(M.rows)

v = rand(N, 1)

t1 = norm(v, 1)

v = scalar('/', v, t1)

t2 = scalar ('*', M, d)

t3 = sub(d, 1)

t4 = div(t3 , N)

t5 = ones(N, N)

t6 = scalar('*', t5 , t4)

M_hat = element_wise('+', t2 , t6)

_ = loop(1, 40, 1)

v = multiply(M_hat , v)

publish(v)

In this case, the leaked information to the adversary is the size of M, the loop iteration

count 40, the looped instruction count 1, and the sequence of operations.
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5.2.6 Block Cache

Next we briefly describe a cache layer which caches the loaded blocks and dynamically

replaces existing big matrix blocks from cache. In addition, we can also minimize the total

cache misses. In the non-interactive mode, i.e., where a user provides the entire work load,

we replace the cache using furthest in future policy (Belady, 1966). It is particularly possible

in our case since the work load is known and most importantly the code is data oblivious

meaning data access does not depend on input dataset content rather only on the size. The

furthest in future is known as an optimal policy, where we replace the cache element that

will be required furthest in the future. On the other hand, in the interactive mode, we

replace in least frequently used model.

5.2.7 Block Size Optimization

In our experiments, we observed that the cost of each operation varies depending on the

block size. So, we propose an optimization mechanism that reduces the total cost of a

sequence of operations. We formalize this optimization by assuming that the input program

can be represented as a directed acyclic graph (DAG) of operations.

Let, O = {o1, o2, ..., on} be the set of operations,M = {M1, M2, ...} be all big matrices

in the computation that are divided into blocks, B ∈ Rd be the block dimensions, where d

is the number of dimensions (for simplicity we are considering d = 2), B = {B1, B2, ...} be

the sets of the block dimensions of BigMatrix setM, Π(oi,Mi,Bi) is the processing cost of

oi on Mi that is blocked as Bi size blocks, ∆(M,Bi, Bj) is the cost of converting the block

size of BigMatrix M from Bi to Bj, λ(oi,B, B) is the peak memory required to perform

operation oi with input BigMatrix blocked in B and output BigMatrix blocked in B.

Next, we define functions that will help us define the cost function. Let, P = {ρ1, ρ2, ..., ρm}

be a program defined as DAG of operation, Op(ρi) ∈ O operation of node ρi, InNodes(ρi) ⊆ P

is the node that is input of ρi, InBlks(ρi) is the sets of input blocks dimension of node ρi,
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InBlks(ρi)[j] is the jth input block dimension of node ρi, OutBlk(ρi) is the output block

dimension of node ρi, InBigM(ρi) is the set of input BigMatrix of node ρi, OutBigM(ρi) is

the output BigMatrix of node ρi.

Therefore, the cost of operation of node ρi can be defined in the following:

cost(ρi) = Π(Op(ρi), InBigM(ρi), InBlks(ρi))

+
∑

ρj∈InNodes(ρi)

[∆(OutBigM(ρj), OutBlk(ρj), InBlks(ρi)[j])]

Finally, we can define the minimization function as

∑
ρi∈P

cost(ρi)

subject to: λ(Op(ρi), InBigM(ρi), OutBigM(ρi)) < MaxMem (memory limit) and InBigM(ρi)

is conformable (i.e., the dimensions are suitable for the operation.) The above formalized

optimization can easily be converted into an integer programming.

A block optimization example for linear regression Next, we show how to apply

our optimization technique to minimize the cost for executing linear regression training

phase, i.e. θ computation, as shown earlier. The corresponding execution tree is illustrated

in Figure 5.3. Here, X and Y are two input matrices formatted into BigMatrix format with

block size of (brX , bcX) and (brY , bcY ). Again, for simplicity we are considering 2-dimensional

matrices. The first operation in our framework is Transpose that takes input of BigMatrix

X and outputs BigMatrix XT . Let us assume that for this operation the input matrix

was blocked into (x0, x1), so the output is blocked into (x1, x0) block. (In reality x0 = brX

and x1 = bcX .) Next, the operation in this program is Multiply that performs matrix

multiplication over BigMatrix XT and X, which are blocked into (x2, x3) and (x4, x5). The

output will be blocked into x2, x5. So on and so forth. Now we can compute the over all
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Figure 5.3. Linear regression execution tree for block size optimization.

cost in term of variables x as follows

Cost = ∆(X, (brX , bcX), (x0, x1)) + Π(′Transpose′, X, (x0, x1))

+ ∆(XT , (x1, x0), (x2, x3)) + ∆(X, (brX , bcX), (x4, x5))

+ Π(′Multiply′, [XT , X], [(x2, x3), (x4, x5)]) + ...

Our target here is to assign values to these x variables in such a way that it satisfies the

computation requirements and also reduce the over all cost. From our experiments, we

know the values of Π and ∆ for different combinations of block size. As observed in our

experimental evaluation, the cost is quite easy to approximate with a very low error rate.
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Finally, it is worth mentioning that, we perform the optimization outside the enclave using

the information already leaked in the trace of the operations (e.g., the size of data matrix).

Therefore, the optimization will not leak any further information.

5.2.8 SQL Parsing and Optimization

Our basic instruction set contains a subset of the SQL operations. To make the program-

ming easier, we provide a SQL parser that takes a SQL SELECT query as input and create an

optimized sequence of instruction to execute the query using our basic commands. For in-

stance, a SQL query A = sql("SELECT * FROM person WHERE age > 50") would be compiled

into A = where(person, ’C:3;V:50;O:=’), (assuming that, ‘age’ is in the third column).

Here, the condition is encoded in postfix notation (Hamblin, 1962). More specifically, the

C:3 part of the expression means the third column, v:50 means value 50 and O:= means

operation equal. We choose postfix notation because it is easy to evaluate. The compiler

can also parse join queries such as:

I = sql(" SELECT *

FROM person p

JOIN person\_income pi (1)

ON p.id = pi.id

WHERE p.age > 50

AND pi.income > 100000")

which will be converted as follows

...

t1 = where(person , 'C:3;V:50;O:=')

// person.age is in column 3

t2 = zeros(person.rows , 2)

set_column(t2, 0, t3)

t3 = get_column(person , 0)
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// person.id is in column 0

set_column(t2, 1, t1)

t4 = where(person_income , 'C:1;V:100000;O:=')

t5 = zeros(person_income.rows , 2)

set_column(t5, 0, t6)

t6 = get_column(person_income , 0)

// person_income.id is in column 0

set_column(t5, 1, t4)

A = join(t3 , t5 , 'c:t1.0;c:t2.0;O:=', 1)

...

Our compiler also takes into consideration of SQL optimizations. In our implementation,

we applied a few standard heuristics such as pushing selection operations (Elmasri, 2008). In

our future work, we are considering utilizing optimization engine from popular open-source

databases. However, we also observed that most of these optimizations heavily depend on

existing index and data stored in the database (e.g., predicate sensitivity). In contrast, our

datasets are encrypted and we protect against data access patterns so index utilization is

not an option for us. Furthermore, optimizations that depend on data distribution are not

applicable due to the sensitive information disclosure issues. It is worth mentioning that,

we only support subset of standard SQL in our current implementation and our join query

requires an additional parameter k that is the maximum number of row matches from the

first table to the second.

5.2.9 BigMatrix Storage

Next, we briefly discuss how we serialize, encrypt, load and store the big matrices.

Serialization and Encryption One important aspect of our framework is that it provides

transparent security for large datasets. First, we compute the number of blocks we need to
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keep in memory to perform the intended operations. Next, we compute the total number of

elements that we can keep in memory. Based on these two values, we partition our matrix

into smaller blocks. Also, it is possible to have edge blocks in a BigMatrix, which does

not have the same number of elements compared to the rest of the blocks. We serialize

each individual block matrix and encrypt the block with authenticated encryption AES-

GCM (Dworkin, 2007), and store MAC of all blocks into their header. We also store the

total number rows and the total number of columns into the header. Essentially with

information from header we can find out the necessary details of a given block and ensure

the authenticity and integrity of the individual blocks. Finally, we serialize and encrypt the

header. In Figure 5.4 we illustrate the serialization process.

BigMatrix

(0, 0)

(0, 0)

(4, 3)

(0, 1)

(0, 1) (4, 3)... ... ...Header

BigMatrix Serialization

Header MACMatrix Info MAC(0,0) MAC(0,1) ... ... ...

Header

Serialization Encryption

Header IV MAC Encrypted Serialized Matrix

Matrix

... ... ...

Figure 5.4. Serialization of a Sample BigMatrix.

Storing and Loading mechanism As we explained in Section 3.2, we create secure

enclaves using Intel SGX API. To write a BigMatrix from enclave to disk we designed
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init big matrix store, store block, and store header OCall functions. The first func-

tion initialized an empty file for a BigMatrix and assign a randomly generated matrix id to

the BigMatrix. The second function stores a block of a particular BigMatrix. The third one

stores the header of the BigMatrix. We need to call the store header function after writing

of all the blocks because our header contains MAC of all the individual blocks to provide the

integrity protection. Similarly, we defined load header and load block OCall functions to

load header and blocks of an existing BigMatrix, respectively.

During code execution in the execution engine, we also keep an internal table of id and

header MAC. Every time we store a BigMatrix using store header function, we store the

header MAC and matrix id. Every time we load a BigMatrix using load header function,

we check the header MAC and stop execution in case of MAC mismatch.

5.2.10 Writing Customized Operations

In addition to our own basic operations, an expert programmer can provide customized code

to be executed as operations. We designed our code in such a way that the user just needs

to provide us an implementation of a predefined abstract class and add the class name in a

configuration file. During the build process our build script will look into the configuration

file, generate call table for execution engine. Our internal operations are also implemented

using the same mechanism. However, building customized method requires code building

and can easily introduce unintentional vulnerabilities. Furthermore, the programmers need

to guarantee data obliviousness of the implementation. In our current implementation,

compiler considers the input sizes as trace of the implementation. In addition, the current

version of our language does not support functions yet. We are planning to add the function

support in future version.
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5.3 BigMatrix API Design

In this section, we discuss more implementation details of different important BigMatrix

operations, with the trace and the cost. We call the information leakage to the adversary

the trace. In general, the trace contains any information that an adversary can observe

from the inputs, and also entering calls (ECalls) and out calls (OCalls) made by an enclave.

The cost is the computation and communication cost of each operation. Since, individual

operations are data independent and these costs will be the same for every possible input and

given only the trace as input, we will be able to compute the cost. During our programming

language construction, we use these cost functions to find the optimal execution plan.

Notations We use A[i, j] to mean the element of matrix A at ith row jth column. A[i, j : y]

indicates y number of elements of ith row from jth column to (j+y)th column. A(p,q) represents

the block at pth row and qit column. A(p:x,q:y) means a sub-matrix of x row blocks and y

column blocks of A starting at pth row block and qth column block.

5.3.1 Matrix scalar operation

Let, A be a m × n matrix that is split into p × q blocks, � be a binary operation, v be

a value, and C be the output matrix of same dimensions. So the scalar operation can be

defined as C[i, j] = A[i, j]� v. Using BigMatrix abstraction we perform,

C(α,β) = A(α,β) � v

for all the 1 ≤ α ≤ p and 1 ≤ β ≤ q to compute desired output.

The trace of this operation consists of size of the matrices, the block size, the sequence

of read block requests of A, and the sequence of write block request for C. After loading a

block we access all the elements once and we do not perform any data dependent operations.

As a result, this operation is data oblivious, i.e., the adversary will not be able to distinguish

two datasets from the traces.
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5.3.2 Matrix element-wise operation

Let, A and B be two matrices of m × n dimension, and � be a binary operation such as

multiplication, addition, subtraction, division, bit-wise and, bit-wise or, etc., C be the output

of o operation applied element-wise between A and B. Meaning, C[i, j] = A[i, j] � B[i, j]

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, where A[i, j] means ith row and jth column element in

matrix A.

Now, let’s assume that A, B and C is too large to fit into the enclave memory and A,

B, C are split into p× q number of blocks. Using BigMatrix abstraction we perform

C(α,β) = A(α,β) �B(α,β)

for all the 1 ≤ α ≤ p and 1 ≤ β ≤ q to compute desired output.

The trace for this operation consists of the size of matrices, the block size, the sequence

of read requests block-by-block for A, B, and the sequence of write request for C. Once in

memory each element is touched only once. Furthermore, we are not performing any data

dependent operations.

5.3.3 Matrix multiplication

Let, A be a m× p matrix, B be a p× n matrix, A be split into q× s blocks, B be split into

s× r blocks, and C be the output of AB. We can compute C with

C(α,β) =
s∑

σ=1

A(α,σ)B(σ,β)

where M(x,y) indicates (x, y) block of matrix M .

The trace of this operation contains the size and block size of A, B, and C, the sequence

of read requests for matrix A, B, and the sequence of write request for C. Similar to

previous operations we do not perform any data dependent operations so this operation is

data oblivious.
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5.3.4 Matrix inverse

Performing matrix inverse is comparatively complicated than other operations. Let A be a

square matrix split into four blocks

A =


E F

G H


where E and H are square matrices with dimensions m×m and n× n, respectively. So, F

and G are m× n and n×m dimension array. The inverse can then be computed

A−1 =


E−1 + E−1FS−1GE−1 −E−1FS−1

−S−1GE−1 S−1


where, S = H − GE−1F . Also, E and S must have non-zero determinants. This format

requires several multiplications and inverses. In a naive implementation, we will need a

large amount of temporary memory. We can perform the following sequence of operations

to inverse a matrix with manageable memory overhead.

• We perform E−1 in place and our BigMatrix internal state is as follows
E−1 F

G H


• We multiply E−1 times block F and negate the result and replace F with the result.

BigMatrix internal state is as follows
E−1 −E−1F

G H
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• Next, we multiply G with −E−1F and subtract from H and replace H, leading to

BigMatrix internal state of 
E−1 −E−1F

G H −GE−1F


Here, H −GE−1F is S.

• We compute S−1 and replace S, so we have
E−1 −E−1F

G S−1


• Next, we compute GE−1 and replace G, so we have

E−1 −E−1F

G S−1


• Now we compute S−1GE−1 by multiplying the last two results. We negate the result

and replace G, so our BigMatrix looks like
E−1 −E−1F

−S−1GE−1 S−1


• We multiply the off diagonal elements and add it to E−1 block, so that we have

E−1 + E−1FS−1GE−1 −E−1F

−S−1GE−1 S−1
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• Finally we multiply −E−1F with S−1, replace −E−1F and we get the intended result.
E−1 + E−1FS−1GE−1 −E−1FS−1

−S−1GE−1 S−1


We can perform these operations with temporary memory equal to the size of input

BigMatrix. Now, we have built an iterative algorithm to perform the inverse. It starts with

block (0, 0) and in each iteration it expands inverse by one block as described in Algorithm 6.

In this algorithm we need to inverse 1× 1 blocks. To achieve that we use a traditional LU

decomposition technique with a fixed number of rounds depending on the size of matrix not

on the data.

Algorithm 6 Matrix inverse by block iterative method.

1: Require: A = Square matrix split into blocks
2: A(0:1,0:1) = inverse(A(0:1,0:1))
3: for i = 1 to number of blocks in A do
4: e = (0 : i, 0 : i)
5: f = (0 : i, i : 1)
6: g = (i : 1, 0 : i)
7: h = (i : 1, i : 1)

8: Af = −1 ∗ Ae ∗ Af
9: Ah = Ah + Ag ∗ Af

10: Ah = inverse(Ah)
11: Ag = Ah ∗ Ae
12: Ag = −1 ∗ Ah ∗ Ag
13: Ae = Ae + Af ∗ Ag
14: Af = −1 ∗ Af ∗ Ah
15: end for

The trace of the matrix inverse performed in blocks consists of the trace of individual

operations in sequences mentioned by Algorithm 6. Similar to previous operations, this

operation does not perform any data dependent execution so it is data oblivious.
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5.3.5 Matrix Transpose

Let, A be a matrix of dimension m× n, which is split into p× q blocks, C be the transpose

of A. C[i, j] = A[j, i] for all elements of A. To compute C in our BigMatrix abstraction we

compute

C(α,β) = transpose(A(β,α))

for 1 ≤ α ≤ p and 1 ≤ β ≤ q.

The trace of the transpose operation is the size of the matrix, the block size, the sequence

of read requests for blocks of A, and the sequence of block write requests for block of B.

Furthermore, while in memory each element value is touched only once and we do not perform

any data dependent operation. As a result, the transpose operation is data oblivious.

5.3.6 Sort and Top k

We use Bitonic Sort (Batcher, 1968) that performs exactly the same number of comparisons

for the same size dataset. However, the comparison function in bitonic sort needs special

attentions in order to make it data oblivious. In particular, we used registers to determine

the comparison result of two rows and swap the values accordingly. To make our framework

more practical we allow users to mention a list of column numbers and the direction of sort

for each column. To make the overall sort operation oblivious, for each row, we read the full

column and touch all the columns, compute a flag value and swap two rows based on the

flag. For top k results, we perform the full sort and keep only the top k results based on the

given criteria.

The trace of the sort function consists of the size of input matrix, the block size, and

the sequence of read and write request for the matrix. We take input of the sorting direction

as a row vector where each element belongs to {0, 1,−1}, 0 meaning no sorting direction, 1

meaning ascending order, and −1 meaning descending order sorting. As a result, there is

no leakage through sorting order input.
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5.3.7 Selection

Our framework also supports a number of most commonly used relational algebra operators.

However, these operations are not data oblivious by nature. Therefore, we have to modify

these operations to make them data oblivious.

Let, A be a matrix of m× n dimensions, ϕ be a propositional formula consisting one or

more atoms, match be a function that takes input a row of the matrix A, a propositional

formula ϕ and outputs 0 or 1 based on the result of the conditional predicate on the row,

and C be the output. In our framework C is defined as a column vector (matrix of m × 1

dimension) and computed as

C[i, 0] = matchϕ(A[i, 0 : n])

for all 1 ≤ i ≤ m. In this way, the output size is always the same, so no information leakage

through output size. Next, we focus on building the match function in a data oblivious

manner. First, we argue that we have to leak the size and type of the operation in our

propositional formula. If we want to hide it then we always have to execute a constant

number of conditional operations in every possible case, anything other than that would

leak information about the ϕ. Furthermore, ϕ can be arbitrarily large and complex. So

hiding ϕ for security will make the framework very inefficient. On the other hand, we can

easily hide the columns that are used in ϕ. We simply touch all the values in input row in

each match execution.

The trace of the selection operation consists of the size of input matrix, the block size,

the sequence of read requests for input matrix, and the matching expression size. Here we

perform data dependent operations but we do exactly same operations for the same number

of input expressions and input rows. We hide the selection expression content by touching

all the element of input matrix row and evaluating the selection expression to find whether

current row matches or not. So we argue that our implementation is data oblivious.
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5.3.8 Aggregation

In our framework, we support four aggregation commands, sum, average, count, min, and

max. Each of these aggregation operations requires different types of processing. By defini-

tion sum, average, count are oblivious since the number of operations does not depend on

the data in anyway. However, min and max depend on the data. In a trivial implementation

min of max computation between two number reveals branch of the code that is executed

by a processor. As a result, the adversary can distinguish between two different datasets.

To remedy that we used techniques described in (Ohrimenko et al., 2016; Rane et al., 2015).

Specifically, we load the values into a register (that is not observable by the adversary),

compute the condition that set a flag, based on the flag we swap, and return value from one

fixed register. In this process the number of operation remains the same, and the same path

of the code is executed regardless of the input data.

The trace of our aggregation operation is the size of input matrix, the block size, the

number of aggregation operation, and the type of aggregation operation.

5.3.9 Join

We only considered a simple join without any special optimizations. We adopted (Agrawal

et al., 2006) technique to perform join between two BigMatrix. Similar to their constructs,

we require users to supply the maximum number of matches in B with A, without this

information the implementation of join operation will become data dependent. Let, A be

matrix of dimension m × n, B be matrix of dimension x × y, ϕ be propositional formula

consisting of atom, match be a function that takes one row from A and another row from

B, outputs 1 if rows matches on given columns and 0 otherwise, and k be the number of

maximum rows in B that matches with any row of A. We use Algorithm 7 to compute

join. For simplicity and efficiency we are considering only BigMatrix that have one column

blocks. It makes it easier to compute the matching condition obliviously. In case, if input
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Algorithm 7 Data oblivious join algorithm for BigMatrix

1: Require: A, B input BigMatrix, that has only one column block, ϕ matching condition,
k = maximum row matches from A to B

2: Output: C output BigMatrix.
3: for u = 1 to row blocks(A) do
4: load block Au
5: for i = 1 to rows(Au) do
6: X = 2k dummy block array
7: t = K
8: for v = 1 to row blocks(B) do
9: load block Bv

10: for j = 1 to rows(Bv) do
11: if match(Au[i, :], Bv[j, :], ϕ) then
12: X[t] = Au[i, :], Bv[j, :]
13: else
14: X[t] = dummy, dummy
15: end if
16: t = t+ 1
17: if t >= 2k then
18: Sort X with bitonic sort such that dummy blocks at the end.
19: end if
20: end for
21: end for
22: Write first k elements to C
23: end for
24: end for

matrix is not in this format we can run reshape operation to make it into this shape. Since

we are considering only BigMatrix with single column we will use Ap to indicate pth block.

The details of this join algorithm is given in Algorithm 7.

5.4 Security Analysis

In this section, we give an overview of the oblivious execution guarantees provided by our

system. As we discuss in Section 5.2.5, our framework is designed to detect any modification

to the underlying data and program execution. Furthermore, we assume that due to SGX

capabilities, a malicious attacker cannot observe the register contents. So an attacker can
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only observe the memory and disk access patterns. Below, we formally define what is leaked

during the program execution for an adversary that can observe only memory and disk

access patterns. Protection against other type of side channel attacks such as timing, energy

consumption is outside the scope of this work.

5.4.1 Composition Security

Let, D = {D1, .., Dα} be the input data, I = {I1, ...Iα} be the encrypted input data, R =

{R1, ..., Rβ} be the intermediate output set, R = {R1, ...Rβ} be the encrypted intermediate

output set, O be the output, O be the encrypted output, F = {F1, ...,Ff} be the set of

available oblivious functions, where each function Fi takes the predefined number of inputs

from I∪R and outputs the predefined number of outputs fromR∪{O} set. Cη = {F1, ...,Fη}

be what the code participants agreed on. Here, Cη is a combination of η functions from F .

• Input Access Pattern (Ap): Suppose Fi is the ith function executed in Cη and

during the execution Fi accessed {I1, ..., Iz}, i.e., Fi depends on {I1, ..., Iz}, then, Api
= {1, ..., z}. Finally, Ap(Hη) is defined as the sequence of all the Api. The input access

pattern captures the access sequence of input data during the secure code execution.

• Intermediate Access Pattern (Bp): Suppose Fi is the ith function executed in Cη

and during the execution Fi accessed {R1, ...,Rz}, i.e., Fi depends on {R1, ...,Rz},

then, Bpi = {1, ..., z}. Finally, Bp(Hη) is defined as the sequence of all the Bpi. The

intermediate access pattern captures the access sequence of intermediate data during

the secure code execution.

• Intermediate Update Pattern(Up): Suppose Fi is the ith function executed in Cη

and during the execution Fi modifies {R1, ...,Rz}, e.g., Fi outputs on {R1, ...,Rz},

then, Upi = {1, ..., z}. Finally, Up(Hη) is defined as the sequence of all the Upi. The in-

termediate update pattern captures the update of intermediate data during the secure

code execution.
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• History(Hη): The history of the system is Hη = (D,R,O, Cη).

• Trace (λ): Let |Ii| be the size of encrypted input Ii, |Ri| be the size of intermediate

output Ri, and |O| be the size of the output. Then, trace λ(Hη) = {(|I1|.., |Iα|),

(|R1|.., |Rβ|), |O|, Ap(Hη), Bp(Hη), Up(Hη)}. Trace can be considered as the maximum

amount of information that a data owner allows its leakage to an adversary.

• View (v): The view of an adversary observing the system is v(Hη) = {I,R,O}. View

is the information that is accessible to an adversary.

Now, there exists a probabilistic polynomial time simulator S that can simulate the adver-

sary’s view of the history from the trace.

Theorem 2. The proposed function composition does not reveal anything other than the

view v.

Proof. We show there exists a polynomial size simulator S such that the simulated view

vS(Hη) and the real view vR(Hη) of history Hη are computationally indistinguishable. Let

vR(Hη) = {I,R,O} be the real view. Then S adaptively generates the simulated view vS =

{I∗,R∗,O∗}

S first generates α number of random data of size {|I1|, ..., |Iα|} and saves it as I∗. Then

S generates random data for R∗ = {|R1|, ..., |Rβ|} similarly.

Now, for the ith function Fi in Cη, S accesses I∗[j] where j ∈ Ap(i), S accesses R∗[j]

where j ∈ Bp(i), S replaces value in R∗[j] where j ∈ Up(Hη)(i) with new random and finally

during the last operation S generates random data of size |O| and sets it to O∗ .

Since each component of vR(Hη) and vS(Hη) are computationally indistinguishable, we

conclude that the proposed schema satisfies the security definition.
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5.4.2 Information Leakage Discussion

As we discussed all the data that is kept outside of the enclave is encrypted using AES-GCM

mode, the storage does not leak any information and any modification to the stored data

can be detected easily.

Although, our proposed framework is data oblivious, as stated in the above proof, we

allow certain information leakage for efficiency. Intuitively, we allow the adversary to know

the input and output size of a function. In addition, since trying to hide intermediate

operation types would be too costly, we allow the adversary to know/infer intermediate input

output operations required for the execution of a function. If we were to hide the operation

type, we would have to perform equal number of operations for all functions (e.g., trying

to hide whether we are doing secure matrix multiplication versus secure matrix addition on

two encrypted matrices). Otherwise, the adversary will learn some information about the

performed function. In our experimental evaluation, we observed that the overhead varies

widely based on the intermediate functions. So, forcing all the functions to perform the

exact same number of operations would make the framework very inefficient especially for

large data sets.

Another issue is whether the size of the intermediate results can disclose any sensitive

information. All of the matrix operations in our framework have fixed size outputs given

the input data set size. Therefore, the size information is already inferable by knowing the

matrix operation type and the input data set size. Therefore, intermediate result size does

not disclose any further information.

In some cases, to prevent leakage due to revealing intermediate result size, we may

skip certain optimization heuristics. For example, as observed in (Zheng et al., 2017), the

heuristic of pushing selection predicates down the relational algebra operation tree may be

skipped to prevent intermediate result size leakage. So our optimization heuristics discussed

in subsection 5.2.8 could be turned off to prevent this type of leakage.
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In other cases, intermediate results may reveal some sensitive information. For example,

consider the statement s = count( where(X[1]>=0)) discussed in subsection 5.2.5 where

we learn the number of tuples in X that has column 1 value bigger or equal than 0. If s

value is used in an operation that results in an object creation (e.g., y=zeros(s)), then the

sensitive s value could be leaked by observing the output size. To protect against such a

leakage, our compiler automatically raises a warning as discussed in subsection 5.2.5. This

way users may consider changing their programs to prevent such leakage. Still, we believe

that this will not be an issue in many scenarios. For example, in the case studies we have

conducted such a leakage never occurred.

5.5 Experimental Evaluations

In this section, we perform experimental evaluations to show the effectiveness of our proposed

system. We developed a prototype application using Visual Studio 2012 and Intel Software

Guard Extensions Evaluation SDK 1.0 for Windows. We perform the experiments on a Dell

Precision 3620 computer with Intel Core i7 6700 CPU, 64GB RAM, running Windows 7

Professional.

5.5.1 Individual Operation Performance

Experiment Setup To understand the performance of the individual operations, we gen-

erated random data sets with varying sizes and observe the time it takes to perform im-

portant operations. However, we acknowledge that the time is sensitive to other events

occurring on the operating system. So we rerun the same experiment (minimum 5 times)

and report the average time. In addition, for all the individual operation experiments, we

reported the results from encrypted and unencrypted version of our operations. For the un-

encrypted version, we use the SGX memory constrained environment to perform the same

operations without encryption. In this way we can observe the encryption overhead of the
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Figure 5.5. Load time encrypted vs. unencrypted

system. We did not consider an implementation outside the enclave as a base line, because

we observe that the same operations inside enclave takes significantly longer time compared

to the outside enclave version. This might be due to the fact that SGX by itself does encryp-

tion of the pages and cannot really utilize existing caching mechanism. Finally, to ensure the

correctness of our framework we collected data access trace of all the operations for different

inputs of the same size and checked whether they match.

Load Operation We start with load operation, which consists of loading data encrypted

with user key, decrypt it, and store again with session key for further use (e.g., the key

stored for writing intermediate results to the disk during the operation). As explained
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in Section 5.2, we break a BigMatrix into smaller blocks and then load-store each block, as

SGX enclave can allocate a certain amount of memory. In addition, we also observe that

we cannot pass large amount of data through ECalls and OCalls. So, we had to further

break the block to smaller chunks. Figure 5.5 illustrates the performance of load operation

for randomly generated data. We report three different experiments. In Figure 5.5(a), we

report load time vs matrix size for block size of 1000× 1000. We observe that loading time

increases with size of the matrix. In Figure 5.5(b), we report load time vs block size for the

matrix 3000 × 3000. Here, we observe that certain block size causes load time to increase

significantly. Finally in Figure 5.5(c), we report the effect of the chunk size in load time.

We observe that the impact of the chunk size over the loading time is insignificant, so we do

not report the chunk size experiments here. Furthermore, in each of the cases, we observe

that encryption has very little overhead.

Scalar Operations Next, we report the performance of scalar operations. We perform

the scalar multiplication on varying matrix and block sizes as illustrated in Figure 5.6. In

particular, we perform the scalar multiplication of a random value to all the elements of

input matrix in a block-by-block manner and store the result as a different matrix. Here, we

again observe that the operation time increases with matrix size in Figure 5.6(a). However,

the block size change does not affect the operation time in most cases as illustrated in

Figure 5.6(b). In Figure 5.6(c), we also report a surface plot of encrypted execution time of

the scalar multiplication. Here x, and y axis represents block row and block column numbers,

respectively, i.e., a point in x, y plain represents a block dimension, and z axis represents

the execution time. We observe that the execution time remains steady and shows steady

growth.

Element-wise Operation Next, we report the performance of element-wise operations.

For an element-wise operation, we take two randomly generated matrix and perform an
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Figure 5.6. Scalar Multiplication time encrypted vs. unencrypted for different matrix (a)
and block size (b). Surface plot of encrypted execution time for different block size (c).

element-wise multiplication and store the result. Similar to the scalar operation, we observe

that the operation time is almost linearly proportional to the matrix size (in Figure 5.7(a)).

Also we observe that the block size does not have huge effect on the operation time (in

Figure 5.7(b)).
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Figure 5.7. Element-wise multiplication execution time encrypted vs. unencrypted for dif-
ferent matrix size (a) and block sizes (b). Surface plot of encrypted element-wise matrix
multiplication (c).

Matrix Multiplication Operation In Figure 5.8, we report the time required to perform

the matrix multiplication of two randomly generated matrices of varying matrix size and

block size. Similar to the previous cases, we observe that matrix multiplication time linearly

depends on matrix size (in Figure 5.8(a)). However, here we also observe that the overhead of

85



 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

 1.4x10
6

 0

 5
x10

6

 1
x10

7

 1
.5

x10
7

 2
x10

7

 2
.5

x10
7

M
at

ri
x

 M
u

lt
ip

li
ca

ti
o

n
 T

im
e 

(m
s)

Matrix Elements

Unencrypted
Encrypted

(a) Matrix Size

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 6
00000

 8
00000

 1
x10

6

 1
.2

x10
6

 1
.4

x10
6

 1
.6

x10
6

 1
.8

x10
6

M
at

ri
x

 M
u

lt
ip

li
ca

ti
o

n
 T

im
e 

(m
s)

Block Elements

Unencrypted
Encrypted

(b) Block Size

Execution Time

 100
 200

 300
 400

 500
 100

 200

 300

 400

 500

 18000

 18400

 18800

 19200

 19600

 20000

M
at

ri
x

 M
u

lt
ip

li
ca

ti
o

n
 T

im
e 

(m
s)

(c) Block Variation

Figure 5.8. Matrix multiplication time encrypted vs. unencrypted for different matrix size
(a) and block size (b). Surface plot of encrypted matrix multiplication execution time for
varying block size (c).

encryption is very low due to the intensive computation required for matrix multiplications.

In addition, we observe a big difference in various block sizes as illustrated in Figure 5.8(b).

Here we observe a steady growth in the operation time with the block size increment. This

can be attributed to the large number of memory access for multiplication. For a larger

block size, our framework has to perform a large number of memory accesses. And in this
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Figure 5.9. Matrix transpose, inverse and sort operation performance.

case, load-store and encryption-decryption overhead is relatively smaller compared to the

memory accesses and computation. So we observe a significant increase in the operation

time.

From these sets of experiments, we observe that the operation time is almost always

linearly proportional to the size of the matrix. However, block size has an important and

varying impact on the execution time. Each operation behaves differently based on these
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Figure 5.10. Relational operations performance encrypted vs. unencrypted.

two parameters. We argue that this is due to the nature of the operation that we perform

on blocks in memory during various operations.

Transpose, Inverse, and Sort Operation Next, we illustrate performance of transpose,

inverse, and sort operations in Figure 5.9. Again, we observe that the required time is

proportional to the size of input matrix. For the matrix inverse experiments, we take square

matrix of different sizes and split it into 500 × 500 elements size blocks and perform the

inverse according to our iterative matrix inverse algorithm described in Algorithm 6. We
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observe that the time increment is correlated with the size of the matrix. For the sort

experiments, we generated three matrices one with random data, one in ascending sorted

order, and one descending sorted, and ran our bitonic sort implementation. We observe

that the required time is exactly the same for all three cases. This affirms our claim of data

obliviousness as well.

Relational Operations Finally, we perform the experiments that highlight the perfor-

mance of relational operations. Similar to our previous experiments, we observe that re-

lational operations also show linear growth in execution time with input matrix size as

illustrated in Figure 5.10.

5.5.2 Case Studies

In this subsection, we perform experiments to show the effectiveness of our overall framework

to solve real-world complex problems and the potential information leakage in each case.

Linear Regression We start with performing linear regression on random datasets. We

chose linear regression because it is commonly used in many scientific studies (Neter et al.,

1996; Seber and Lee, 2012). The time required for the execution is reported in Figure 5.11.

We observe that the operation time is proportional to the input size. This is due to the

fact each internal operation to compute θ exhibits a linear growth property. Next, we

report the execution time to compute the θ on two real world machine learning datasets:

USCensus1990 (Meek et al., 2002) and OnlineNewsPopularity (Fernandes et al., 2015) from

UCI Machine Learning Repository (Dua and Graff, 2017). In both cases, we take one column

as the target variable and others as the input feature. The results are given in Table 5.1.

As we have proved in Section 5.4, an attacker (e.g., a malicious operating system) can

learn limited information due to the data analytics task execution over the encrypted data.
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Figure 5.11. Linear Regression time encrypted vs. unencrypted.

In this case study, basically, regression is executed using a sequence of operations with fixed

input, output, and block size. More specifically, for the USCensus1990 case, an adversary can

observe that we are performing a sequence of matrix operations on n×m and n× 1 matrix,

and we are publishing m × 1 matrix, where n = 2, 458, 285, m = 67, and the sequence of

operations are load, load, transpose, multiplication, inverse, multiplication, multiplication,

and publish. The adversary can also observe the individual operation’s input-output size.

This information is trivially leaked based on the operation types and the input data set size.

In addition, the adversary can know the block size used in each operation. In summary,

an attacker can only infer that regression analysis is done over a matrix of size n ×m for

specific n and m values, nothing else.

PageRank We chose PageRank as another case study, since it has been extensively

used in link analysis. In our experiments, We use 3 directed graph datasets: Wikipedia

Table 5.1. Time results of linear regression on real datasets.
Data Set Rows BigMatrix Encrypted

USCensus1990 2,458,285 3m 5s 460ms
OnlineNewsPopularity 39,644 2s 250ms
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vote network (Leskovec et al., 2010), Astro-Physics collaboration network (Leskovec et al.,

2007) and Enron email network (Leskovec et al., 2009) from Stanford Network Analysis

Project (Leskovec and Krevl, 2014). We generate the adjacency matrix of these networks

and perform 40 iteration of PageRank. The execution time is reported in Table 5.2. We

observe that as the dataset size increases the time increases significantly. That is because

the total number of elements of a matrix increases quadratically as the number of nodes

increases.

Table 5.2. Page Rank on real datasets.
Data Set Nodes BigMatrix Encrypted

Wiki-Vote 7,115 97s 560ms
Astro-Physics 18,772 6m 41s 200ms
Enron Email 36,692 23m 19s 700ms

Information leakage in PageRank is a sequence of operations with input, output, and

block sizes. In addition, the page rank algorithm (as described in Section 5.2.5) has loop

instructions, where it can leak the size of the loop and iteration count of the loop. Further-

more, the program uses a constant, i.e., the damping factor, which can be leaked too. On

a side note, if a user needs to hide a value, our current implementation requires the user to

input it as data rather a hard-coded constant in the program. Specifically, for Wiki-Votes

example, an adversary can know that the user is performing a sequence of operations over a

matrix of size m×m and output another m× 1 matrix, where m = 7, 115 and the sequence

of operations are load, assign, assign, rand, norm, scalar, scalar, sub, div, ones, scalar, el-

ement wise, loop, multiply, and publish. The adversary can also observe the size of input

output of each operation. In addition, the adversary can also observe the block size used in

each operation. In summary, the adversary can only infer that PageRank is executed over

a m×m matrix, and nothing else.
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Join oblivious vs. non-oblivious We test the overhead of obliviousness in SQL JOIN

query. We take the Big Data Benchmark (AMPLab, 2014) from AMP Lab and run a join

query SELECT * FROM Ranking r JOIN UserVisits uv (20) ON (r.pageURL = uv.destURL)

in oblivious and non oblivious mode for the small version of the dataset, where Ranking

table contains 1, 200 rows and 3 columns and UserVisits table contains 10, 000 rows and

9 columns. We observe that the non-oblivious version takes 3min 46.3sec and the oblivious

version takes 24min 12.47sec. The main reason behind the oblivious version being slower is

that the value of K (i.e., the intermediate join size upper limit) is relatively high. In general,

for join operation the overhead in oblivious version is mainly controlled by the parameter

K. In this setting, an adversary can only infer the input size and the value of K, nothing

else.

Comparison with a SMC Implementation Finally, for the sake of completeness, we

also compare our result with a popular multi-party computation programming abstraction

ObliVM (Liu et al., 2015). Here we perform matrix multiplication for varying size matrices

using ObliVM generated code and our BigMatrix construct. As expected, we observe that

the ObliVM takes significant amount of time compared to our solution with Intel SGX in

Table 5.3. A solution using traditional multi-party circuit evaluation technique will always

incur high overhead compared to a hardware assisted solution, because of the intensive com-

Table 5.3. Two-party matrix multiplication time in ObliVM vs. BigMatrix.
Matrix ObliVM BigMatrix BigMatrix

Dimension SGX Enc. SGX Unenc.

100 28s 660ms 10ms 10ms
250 7m 0s 90ms 93ms 88ms
500 53m 48s 910ms 706.66ms 675.66ms
750 2h 59m 40s 990ms 2s 310ms 2s 260ms

1,000 6h 34m 17s 900ms 10s 450ms 10s 330ms
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munication and complex cryptographic operations. Due to the huge performance difference,

we did not conduct more complex comparisons involving ObliVM.

5.6 Conclusion

In this chapter, we proposed an effective, transparent, and extensible mechanism to process

large encrypted datasets using a secure Intel SGX processor. Our main contribution is the

development of a framework that provides a generic language that is tailored for data analyt-

ics tasks using vectorized computations, and optimal matrix-based operations. Furthermore,

our framework optimizes multiple parameters for optimal execution while maintaining obliv-

ious access to data. We show that using such abstractions, we can perform essential data

analytics operations on encrypted data set efficiently. Our empirical results show that the

overhead of the proposed framework is significantly lower compared to existing alternatives.
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CHAPTER 6

SGX-IR: SECURE INFORMATION RETRIEVAL WITH TRUSTED

PROCESSORS

6.1 Introduction

In this chapter, we discuss secure text and image index building using trusted processors. We

proposed a secure index building for text and image data. We build text index to support

TF-IDF and different variants (Christopher D. Manning and Schtze, 2008), such as, log,

augmented, boolean term frequency with cosine normalization. To do that efficiently, we

first do document level summarization and create a stream of tuples of token id, document

id, and count. Next, we encrypt and send it to the server. In the server, we compute

different TF-IDF values. For face recognition, we encrypt the face images and send them

to the server. In the server, we scale all the face images to the same size and calculate

eigenfaces (Turk and Pentland, 1991) of the input images. We adopt Jacobi’s eigenvector

calculation algorithm to compute the eigenfaces. Our contributions in this chapter can be

summarized as follows:

• We propose algorithms to build a search index for text data that supports TF-IDF

based ranked information retrieval.

• We propose data oblivious algorithm for computing eigenvectors for a given matrix,

and show how to use it for face recognition on encrypted image data.

• We build a prototype of the system and show its practical effectiveness.

6.2 System

In this section, we outline our system details including setup and core building blocks.
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6.2.1 Setup and Threat Model

Our system has two components: client and server. We briefly discuss these components

and the threat model below:

Client To organize and properly utilize our server, we need a client program that runs in

users device. It is capable of encrypting user data and send it to server for further compu-

tation. We also assume that computational capability of our users’ systems are significantly

limited. Our primary motivation is to off-load the index creation step for encrypted search

to cloud. So that users with smaller capability machines can perform very large privacy

preserving computation using secure server.

Server Our server has hardware based trusted execution environment (i.e. Intel SGX)

and services that manages and monitors secure enclave life-cycle.

Threat model We follow standard threat model of trusted processor base systems. Specif-

ically, we are considering a scenario, where a user has large number of documents on which

she wants to build search index in a secure cloud server. Our user do not trust the server

completely. User expects that server will follow the given protocol but server will want

to infer information form the data. User only trusts the trusted component of the server,

e.g. Intel SGX. Apart for the trusted component, all other components of the server, such

as, hyper-visor, operating system, main memory, etc., are not trusted by the user. We are

assuming that user can verify that server is executing proper code using proper attestation

mechanism. In addition, we assume that communication between client and server is done

over secure channel (TLS/SSL).
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6.2.2 Storage

We adopted techniques outlined in Chapter 5 to store large dataset in our system. In short

we break a large matrix into smaller blocks and load only blocks that are required to perform

the intended operation. Once done we remove the block and encrypt the block again with

session key and store in disk. We use least recently used (LRU) technique to manage the

block caching. In addition, we also keep the IV and MAC of all the blocks into a header file,

which is integrity protected.

6.2.3 Notation

We represent all of our data in two dimensional matrices. In some cases, we also define col-

umn names of matrices. We use A[i] to denote ith row of a 2D matrix or table, A[i].col name

to denote value of the column col name on ith row.

6.2.4 Secure text indexing in Server

We start by creating token and document pair and encrypting them in the client side.

We perform initial tokenization in the client to achieve privacy (i.e., cloud only sees the

encrypted data). In addition, we can perform tokenization using traditional algorithms,

such as, Porter stemming (Porter, 2006), in one pass over the data. So we tokenize before

data encryption. In addition, our client has limited memory so we use hash function to

generate token id from lexical token. Let, D = {d1, d2, ..., dn} be a set of input documents,

id(di) be the document id, Θd be set of tokens in document d, H be a collision resistant

deterministic hash function that generates token-id from lexical, tft,d be the number of times

token t occurred in document d. We start by extracting tokens from all the documents. We

build matrix I with three columns - token id, doc id, and frequency. For all t in Θd we

add 〈H(t), id(d), tft,d〉 to I. We can perform this step easily on client, because in most of

cases, text datasets consists of a lot of small files. Furthermore, if we need to process a large
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Figure 6.1. Text indexing example

document we can split it into smaller files then process as usual. Next we encrypt I and

send it to server.

On server we decrypt I inside enclave. We sort I in ascending order of token id and

assign result to I ′ obliviously, as listed in Algorithm 8 in line 3. We define two matrices

U(token id, count, sum) to store the number of documents that a token occurred and sum-

mation of total occurrences of all tokens. We iterate sequentially over I, calculate condition

c = I ′[i].token id 6= I ′[i − 1].token id, in line 8, if c is true, this implies that we are now

reading a new token’s information otherwise we are reading current token’s information.

Based on c we obliviously fill count and sum column of U with the count and summation

of the token or a dummy value, in lines 9 to 13. We sort U based on token id, to move

the dummy values to end, in line 15. At this stage, in U , ith row has the count and sum of

(i−1)th token. So, we shift the count and sum one row in lines 15 and 16. To access a token

information obliviously, we need to create equal length for all the tokens. One approach can

found the maximum count of any token and allocate that number of elements per token.

However, based on the experimental results, we observe that token frequencies follow pareto

distribution or power law, i.e., a large number to token will appear in relatively small number
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Algorithm 8 Text index building

1: Require: I = n× 3 input matrix
2: Output: T = Index p× 3 and DF = p× 2 matrices
3: I ′ ← obliviousSort(I, token id)
4: #← −1 . dummy value
5: sum← 0, count← 0
6: U [0]← 〈I ′[0].token id, 0, 0〉
7: for i = 1 to I ′.length do
8: c← I ′[i].token id 6= I ′[i− 1].tok id
9: U [i].token id← obliviousSelect(I[i].tok id,#, 1, c)

10: U [i].count← obliviousSelect(count,#, 1, c)
11: U [i].sum← obliviousSelect(sum,#, 1, c)
12: count← obliviousSelect(count, 0, 1, c) + 1
13: sum← obliviousSelect(sum, 0, 1, c) + I[i].frequency
14: end for
15: U ′ ← obliviousSort(U , token id)
16: U ′[i].count = U ′[i+ 1].count
17: U ′[i].sum = U ′[i+ 1].sum
18: Remove rows with #
19: Generate inverse document frequency from U ′
20: b← optimizeBlockSize(U .count)
21: count← 0
22: for i = 0 to I ′.length do
23: J [i].token id← σ(I ′[i].token id, b count

b
c)

24: count← obliviousSelect(count+ 1, 0, 1, count < b)
25: end for
26: for i = 0 to numToken do
27: for j = b− 1 to 0 do
28: c← U ′[i].count%b < j

29: t← σ(U ′[i].token id, bU
′[i].count

b
c)

30: X[i ∗ b+ j].token id← obliviousSelect(t,#, 1, c)
31: end for
32: end for
33: T ← mergeAndSort(J,X, doc id)

of documents. So if we block based on maximum token count, we will have lots of dummy

entries. To reduce the storage overhead, we split large token into smaller blocks. We use

optimization strategies outlined in Section 4.3.6 to find the optimal size b. We adopt this

specific technique because it assumes a distribution of frequencies rather than relying on
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real data. In our scenario, the block size will be revealed to adversary so such an approach

will help us reduce information leakage.

Next, we define a deterministic collision-resistant hash function σ that returns a new

token id given token id and relative block number. For all the entries in I ′, we apply σ

on token id and generate J matrix with token id′, doc id, and frequency, in lines 21 to

25. Next, for all tokens in U ′ we add U [i]′.count%b dummy entries into X obliviously, in

lines 26 to 32. Also, we merge X with J and sort the resulting matrix. Finally, we remove

the rows with only dummy entries. So that T contain m rows per token. Now we push m

rows into any standard ORAM if we want to access specific token information obliviously

in sub-linear time. Otherwise, we can read a token’s information obliviously by reading the

entire T matrix once. Figure 6.1 illustrates an example of secure text indexing.

obliviousSelect(a, b, x, y): Let, a and b are two integers to select from, x and y be

two comparison variable. We return a if x == y, otherwise return b. We show the most

important lines of the implementation in the following code listing. We start by copying

value of x and y to eax, ebx then perform xor, in line 5, so if x and y are equal then zero

flag is set. Next, we copy value of a and b into ecx and edx. Now we conditionally move, in

line 9, based on zero flag, between ecx and edx registers. So if zero flag is set then edx will

get value of eax otherwise the value will remain unchanged. Finally, we return the value of

edx register. In our setup, adversary will only observe sequence of operations but will not

know exactly which value was selected.

1 oblivousSelect(a, b, x, y):

2 ...

3 mov %[x],%%eax

4 mov %[y],%%ebx

5 xor %%eax , %%ebx

6 ...
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7 mov %[a],%%ecx

8 mov %[b],%%edx

9 cmovz %%ecx ,%%edx

10 ...

11 mov %%edx , %[out]

Oblivious Bitonic Sorting We use bitonic sort (Batcher, 1968) for sorting in the server,

because in bitonic sort we perform exactly the same comparisons irrespective of input data

value. Specifically we use the arbitrary length version to save time and space. In our

empirical analysis, we have observe that total number to rows in matrices I, J , etc. can go up

to 226 or more. So to utilize traditional bitonic sort, we need to pad the matrices with dummy

entries to 227 number of rows. In practice, we observe that this adds upto 40% overhead. In

addition, we implement an iterative variant of the bitonic sort of arbitrary length. We avoid

recursion to save stack space, since SGX is a memory constraint environment. In Algorithm 9

we define our iterative implementation. We utilize existing definition of iterative bitonic sort

defined in (Christopher, 2019; Wikipedia contributors, 2019) for length 2k. The core idea

behind this implementation is that any number can be expressed as summation of one or

more 2k format numbers, such as, N = 2x1 + ....+ 2xm . For given N element array/matrix,

we consider it as block of 2x1 , ..., 2xm−1 rows. We sort first (m − 1) blocks in descending

order and sort the final block m ascending order using existing definition of non-recursive

bitonic sort. Next we merge last two blocks m and (m−1) in ascending order. We iteratively

continue to merge the result with previous block. So, finally we get a sorted array/matrix

in ascending order. In addition, we also make the exchange step oblivious. So the adversary

will not get any additional information from sequence of comparisons and successful swaps.
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Algorithm 9 Non-recursive non-trivial bitonic sort for arbitrary length

1: for d = 0 to dlog2(N)e do
2: if ((N >> d)&1) 6= 0 then
3: start← (−1 << (d+ 1))&N
4: size← 1 << d
5: dir ← (size&N&−N) == (N&−N)
6: bitonicSort2K(start, size, dir)
7: if !dir then
8: bitonicMerge(start,N − start, 1)
9: end if

10: end if
11: end for

6.2.5 Image indexing for face recognition

Oblivious Eigenface To make the entire process data oblivious, we need oblivious eigen

vector calculation and oblivious comparison of projected test image. We discuss oblivious

eigen vector calculation in a separate subsection. For oblivious distance calculation, we

compute the distance function for all input training faces. We create M × 2 matrix F ,

where first column is face id and second column contains 1 if that face’s distance is bellow

the threshold and 0 otherwise. Finally, we sort F based on second column in descending

order to get the matching face id.

6.2.6 Oblivious eigen vector calculation

We adopted Jacobi method (Golub and Van der Vorst, 2001) of eigen vector computation

for oblivious calculation. In Jacobi eigenvalue method, as outlined in Algorithm 10, we start

with finding maximum value and index of maximum value (k, l) in input symmetric matrix.

Next we compute few values based on max, Ak,l, Al,k (in lines 13 to 20). In line 21, we

assign zero to Ak,l and Al,k, and compute Ak,k and Al,l. Then, we perform rotations on kth

column and lth column. However, since this is a symmetric matrix we can perform same

computation only on upper triangular matrix as described in lines 22 to 31. We also perform
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Figure 6.2. Oblivious Eigen Matrix calculation

the same rotation on eigen matrix E, which is initialized with identity matrix (in lines 32

to 34). We repeat the process until the input matrix becomes diagonal. The values in the

main diagonal approximates the eigen values and normalized version of the the eigen matrix

E consists of all the eigen vectors of matrix A. In practice, for eigenface, we need top n

largest eigen vectors. To extract top n eigen vectors we sort the eigen vectors based on eigen

values.

We define a few additional oblivious functions, which we use later in the oblivious eigen-

vector calculation algorithm.

obliviousValueExtract(U, k): Given an array U and an index k, we extract the value

of Ux obliviously. We initialize v ← U0 then we iterate over all the elements in the array

and run obliviousSelect(v, Ui, i, k) and assign the return value to v. As a result, when i is

equal to k the return value will be Uk, otherwise it will always return existing value of v.

Similarly we define obliviousValueAssign(U, k, a), where we assign value a to kth location

of input array U .

obliviousColumnExtract(A, k): Given a 2D matrix A and a column index k, we extract

kth column of matrix A. We utilized previously defined oblivious select. For a given row, r,
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we iterate over all the columns c and assign Ur to output of obliviousSelect(Ar,c, Ur, r, k).

As a result, when r is equal to k then we get the value of Ar,c in Ur, otherwise value of Ur

remains the same. Similarly, we define obliviousColumnAssign() and obliviousRowAssign(),

where we assign the input column in a specific column or row of input matrix. In addition, we

also define obliviousConditionalColumnAssign() and obliviousConditionalRowAssign(), with

one more boolean parameter, where we perform the assignment if and only if the boolean

parameter is true.

obliviousMaxIndex(A): We copy current element and current maximum (initially zero)

into floating-point stacks in st(1) and st(0). Next, we perform floating-point comparison,

as shown in line 3 in the following code listing, which sets appropriate registers. Next, we

perform conditional move operation which swaps values in the floating-point stack if the

proper flag is set, in line 4. As a result, the maximum value will be at the top of the

floating-point stack, which we assign back to the maximum variable.

Next, we move row of maximum and current element into two registers, eax andebx

respectively, in lines 6 and 7. Then we again conditionally swap these two registers and

the flag was set during the initial float comparison, in line 8. So, the index of the largest

value will be in eax, which read back to maxRow variable. Similarly, we also perform a

conditional move for maximum column index in lines 10, 11, and 12.

1 obliviousMaxIndex(m, e, mR, mC, eR, eC):

2 ...

3 fucomi %%st(1), %%st

4 fcmovb %%st(1), %%st

5 ...

6 mov %[mR],%%eax

7 mov %[eR],%%ebx

8 cmovb %%ebx , %%eax

9 ...
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10 mov %[mC],%%eax

11 mov %[eC],%%ebx

12 cmovb %%ebx , %%eax

13 ...

Now, we create the data oblivious version of Jacobi’s eigenvalue calculation listed in

Algorithm 11. First, we fix the number of iterations and do not return early based on

convergence. As a result, the adversary can not learn information about data based on the

iteration count. Next for finding the maximum, max and index of maximum elements (k, l)

using obliviousMaxIndex operation in line 6. We extract kth and lth columns, U and V

using obliviousColumnExtract, in lines 8 and 9. Next, we extract values of kk and ll using

obliviousV alueExtract operation in lines 10 and 11. Next, we calculate value τ, t, s in lines

from 12 to17. For t we first calculate both max
d

and | 1

|p|+
√
p2+1
| then we obliviously choose

correct version using obliviousSelect. Next, we perform the rotation on extracted column

and assign kth and lth value of U and V appropriately in lines 18 to 24. Then, we assign

the column back to A if the algorithm is not converged, in lines 25 to 28. We determine

convergence condition C in line 7 by check whether the current maximum is smaller than

a predefined small value. We perform similar rotation on matrix E, in lines 29 to 33. We

iterate the entire process fix number of times. Finally, we normalize and sort the eigen

matrix based on eigenvalues in lines 35 to 37. The normalization process is naturally data

oblivious, i.e. we execute same instructions irrespective of input data. For sorting we use

our previously defined bitonic sort.

6.3 Experimental Evaluations

In this section, we discuss the performance of our proposed system. We developed a proto-

type of the proposed system SGX-IR, using Intel Software Extensions SDK 2.6 for Linux.

We perform the experiments on a Intel LR1304SPCFSGX1 server with Intel® Xeon®
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CPU E3-1270 @ 3.80GHz CPU, 64GB main memory, 128MB enclave memory, and running

Ubuntu Server 18.04.

6.3.1 Bitonic sort
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Figure 6.3. Bitonic sort time

We first briefly discuss the impact of arbitrary length bitonic sort. In Figure 6.3 we show

sort time of different size matrices with 3 columns. The solid line represents sorting duration

and the dotted line represents sorting duration for the next 2k element matrix. With the

arbitrary length algorithm, the growth of the required time is linear. On the other hand, if

we were to use 2k version our required time would be the dotted line, where we have about

50% overhead in extreme cases.

6.3.2 Text Indexing

Dataset We use Enron dataset (Klimt and Yang, 2004) for text indexing experiments.

We randomly select sub-set of files from the Enron dataset. Then we parse the data in the

client end. We tokenize, stem (Porter, 2006), and build document token pairs. Next, we

encrypt and send the data to server. In server we follow the algorithm outlined in Sec 6.2.4

to sort and generate index.
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Figure 6.4. Enron experiment

Performance In Figure 6.4(a) we show the performance of client-side index pre-processing.

We show time to build the input matrix using different types of cryptographic and non-

cryptographic hashing functions and keeping an in-memory map for token id generation. We

observe that incrementation token id generation is the most expensive and non-cryptographic

hash, i.e., MurMur Hash, is the least expensive. In addition, we show the time required for

only encrypting the data without performing any tokenization and token id generation,

which shows the overhead of read-write and encryption. The gap between encryption only

and a hashing token id generation signifies the overhead of our tokenization and matrix

generation. Finally, in all theses cases we observe the growth is linear.
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In Figure 6.4(b) we show server-side index processing cost. We compare our results with

a non-oblivious version of a similar index building. For non-oblivious implementation, we

sort the input matrix based on token id then build a separate matrix that is equivalent to T

by iterating the sorted matrix. We observe that the obliviousness implementation is about

1.49 times more expensive. Finally, to show the effectiveness, of our information retrieval

system we compare ranked results with Apache Lucene (ApacheLucene, 2019) library result.

Apache Lucene library is the de-facto standard of information retrieval library and is used in

numerous commercial and open-source search engine software, such as Apache Solr (Apach-

eSolor, 2019), Elasticsearch (Elastic, 2019). We adopt normalized discounted cumulative

gain (NDCG) score (Christopher D. Manning and Schtze, 2008) to compare the ranked re-

sults of the information retrieval systems. In Figure 6.4(c) we report the NDCG score of

our system compared to Apache Lucene for randomly selected 1, 000 tokens. We observe

that our scores are about 0.92. In other words, our model works relatively well compared

to the industry-standard information retrieval system. In addition, we allow different types

of frequency normalizations. So users of the system can tune the normalization functions to

improve the results as needed.

6.3.3 Face Recognition

Dataset We use Color FERET (Phillips et al., 1998, 2000) dataset for testing face recog-

nition. Color FERET dataset contains a total of 11338 facial images, which were collected

by photographing 994 subjects at various angles. The dataset images contain face images

in front of different background often containing other objects. So, wrote a face detection

program using OpenCV implementation of haar cascade classifier (Viola and Jones, 2001;

Lienhart and Maydt, 2002) for frontal face. We extract frontal face images with fa suffix

from the dataset. We found that there are total 1364 such images. Our face detection system

successfully detected 1235 images, yielding 90.33% accuracy. Here, most of the failed cases
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Figure 6.5. Oblivious eigen-face experiment

has glass or similar face obstructing additions. We extract the frontal faces and scale to

100×100 faces. Then we randomly selected sub-set of images and build our face recognition

dataset.

In Figure 6.5(a), we show the performance of face image preparation and in Figure 6.5(c)

face finding overhead. Both of these operations are standard matrix operations. So overheads

are very minimal under a minute. In Figure 6.5(b) we show the required time for building

the eigenface index, which is dominated by the overhead of in eigenvector calculation. We

compare our results with a non-oblivious version of the algorithm. For the non-oblivious

version, we implement the Jacobi algorithm without accessing the matrix values obliviously.
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We observe that both the cases the required times are quite large because of the large number

required iteration for the Jacobi algorithm to converge. We observe that, the obliviousness

adds around 5 times more overhead. We incur such large overheads because we read the

entire matrix to extract and assign the required rows and columns.

6.4 Conclusion

In this chapter, we propose a secure information retrieval system for text and image data.

Unlike other existing works, we focus on building the encrypted index in the cloud securely

using trusted processors, such as Intel SGX. We address the information leakage due to

memory access pattern issue by proposing data oblivious indexing algorithms. We build a

text index to support ranked document retrieval using TF-IDF scoring mechanisms. Also,

we build an image index to support the face recognition query. In addition, we also propose

a non-recursive version of the bitonic sort algorithm for arbitrary input length.
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Algorithm 10 Eigen vector with Jacobi method

1: Require: A = n× n diagonal matrix
2: Output: E = eigen vectors, V = eigen values
3: E ← identity(n)
4: ε1 ← 10−12, ε2 ← 10−36

5: for it = 0 to n2 do
6: max← max(A) in off-diagonal upper triangle
7: (k, l)← maxIndex(A)
8: if max < ε1 then
9: Vi ← Ai,i,∀i ∈ 0 to n

10: normalize(E)
11: return
12: end if
13: d← Al,l − Ak,k
14: if |Ak,l| < ε2|d| then

15: t← Ak,l
d

16: else
17: p← d

2Ak,l

18: t← | 1

|p|+
√
p2+1
|

19: end if
20: c← 1√

t2+1
, s← t× c, τ ← s

1+c

21: Ak,k ← Ak,k − t× Ak,l, Al,l ← Al,l + t× Ak,l, Ak,l ← 0

22: R ← s.

[
−τ −1
1 −τ

]
23: for i = 0 to k − 1 do

24:

[
Ai,k
Ai,l

]
+ = R×

[
Ai,k
Ai,l

]
25: end for
26: for i = k + 1 to l − 1 do

27:

[
Ak,i
Ai,l

]
+ = R×

[
Ak,i
Ai,l

]
28: end for
29: for i = l + 1 to n− 1 do

30:

[
Ak,i
Al,i

]
+ = R×

[
Ak,i
Al,i

]
31: end for
32: for i = 0 to n− 1 do

33:

[
Ei,k
Ei,l

]
+ = R×

[
Ei,k
Ei,l

]
34: end for
35: end for
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Algorithm 11 Oblivious Eigen vector with Jacobi method

1: Require: A = n× n diagonal matrix
2: Output: E = eigen vectors, V = eigen values
3: E ← identity(n)
4: ε1 ← 10−12, ε2 ← 10−36

5: for it = 0 to n2 do
6: max, k, l← obliviousMaxIndex(A)
7: C ← max < ε1
8: U ← obliviousColumnExtract(A, k)
9: V ← obliviousColumnExtract(A, l)

10: kk ← obliviousV alueExtract(U, k)
11: ll← obliviousV alueExtract(V, l)
12: d← ll − kk
13: m← |max| < ε2|d|
14: p← d

2×max
15: t1 ← max

d
, t2 ← | 1

|p|+
√
p2+1
|

16: t← obliviousSelect(t1, t2,m, 1)
17: c← 1√

t2+1
, s← t× c, τ ← s

1+c

18: R ← s.

[
−τ −1
1 −τ

]
19:

[
U
V

]
+ = R×

[
U
V

]
20: kk ← kk − t×max, ll← ll + t×max
21: obliviousV alueAssign(U, k, kk)
22: obliviousV alueAssign(V, l, ll)
23: obliviousV alueAssign(U, l, 0)
24: obliviousV alueAssign(V, k, 0)
25: obliviousConditionalColumnAssign(A,U, k, !C)
26: obliviousConditionalColumnAssign(A, V, l, !C)
27: obliviousConditionalRowAssign(A,U, k, !C)
28: obliviousConditionalRowAssign(A, V, l, !C)
29: U ← obliviousColumnExtract(E, k)
30: V ← obliviousColumnExtract(E, l)

31:

[
U
V

]
+ = R×

[
U
V

]
32: obliviousConditionalColumnAssign(E,U, k, !C)
33: obliviousConditionalColumnAssign(E, V, l, !C)
34: end for
35: Vi ← Ai,i, ∀i ∈ 0 to n
36: normalize(E)
37: sort(E) based on V
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CHAPTER 7

CONCLUSION

In this dissertation, we provide efficient and secure solutions to indexing, searching, and

analyzing encrypted data in cloud computing environment. We show that proposed solutions

allow the user to utilize the cloud computing environment in a more secure manner.

First, we show that we can perform very complex search queries on encrypted image

data, such as face recognition, without cryptographic computation support from the cloud

server. We achieve this by converting complex search queries into a series of simple equality

queries. We defined series of feature extraction and transformation functions that allows

such simplification. Furthermore, we propose a generic framework for building and querying

search index for any data type. As a result, our user can define their own extract and

transform function to support other types of data and queries. We also theoretically prove

that our system has very limited information leakage.

Next, we focus on the problem of performing data analytics on encrypted data using

trusted processors. We observe that trusted processors have some sever shortcomings, such

as memory access leakage, a very small amount of memory, and no out-of-the-box secure

multi-party computation support. To that end, we propose an efficient and extensible mech-

anism to process large encrypted datasets using trusted processors, such as Intel SGX. Our

framework automatically compiles programs written in our language to optimal execution

code by managing issues such as optimal data block sizes for I/O, vectorized computations

to simplify much of the data processing, and optimal ordering of operations for certain tasks.

Furthermore, many language constructs such as if-statements are removed so that a non-

expert user is less likely to create a piece of code that may reveal sensitive information while

allowing oblivious data processing (i.e., hiding access patterns). Using these design choices,

we provide guarantees for efficient and secure data analytics. We show that our framework

can be used to run the existing big data benchmark queries over encrypted data using the
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Intel SGX efficiently. Our empirical results indicate that our proposed framework is orders

of magnitude faster than the general oblivious execution alternatives.

Finally, we utilize a trusted processor to build a secure search index in the cloud. We

propose algorithms to build a search index for text and image in data oblivious manner

to reduce information leakage due to memory access. Our text index can support ranked

document retrieval using TF-IDF scoring. Our system is extensible enough to support

user preferred frequency normalization mechanisms. We also compare our results with the

industry-standard information retrieval system and observe that our system can produce

high quality ranked search results. In addition, to improve performance we defined a non-

recursive version of the bitonic sort algorithm for arbitrary length input, which allows us to

reduce the significant overhead from unnecessary padding. We also build search index to

support face recognition queries using eigenface. We propose a data oblivious version Jacobi

eigenvector calculation algorithm to build the eigenface index.
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