
UT DALLAS Erik%Jonsson%School%of%Engineering%&%Computer%Science

FEARLESS engineering

Secure Cloud Data Analytics with
Trusted Processors

Fahad Shaon

The University of Texas at Dallas

FEARLESS engineering 1 / 89

Introduction

I Cloud computing is ubiquitous
I No upfront infrastructure cost
I Speed
I Scale as needed

I Market is still growing fast
I Market size: 2018 - $182.4B,

2022 - $331.2B

Cl d C i

FEARLESS engineering 2 / 89

Cloud computing - Issue

I Security breaches are very frequent now-a-days

FEARLESS engineering 3 / 89

Security Breach in Cloud Context

I Third-party vendor system
had publicly accessible
AWS S3 bucket

I Impact: 6 million records
were compromised

I Solution: Enable encryption
in the S3 bucket

FEARLESS engineering 4 / 89

Data Analytics on Cloud - Issues

Code & Data

Result

Some Issues

I Sensitive data (e.g., medical, financial data) exposure

I Highly vulnerable to insider attack

I Service provider can observe the data and patterns

FEARLESS engineering 5 / 89

One Solution - Secure Data Analytics on Cloud

I We do not trust the cloud, unless it has trusted processor

I We only outsource encrypted data

I However, encrypted data is difficult to analyze

FEARLESS engineering 6 / 89

Chapters

I A Practical Framework for Executing Complex Queries over
Encrypted Multimedia Data [DBSec 2016]

I SGX BigMatrix: A Practical Encrypted Data Analytic
Framework with Trusted Processors [CCS 2017]

I SGX IR: Secure Information Retrieval with Trusted Processors

FEARLESS engineering 7 / 89

UT DALLAS Erik%Jonsson%School%of%Engineering%&%Computer%Science

FEARLESS engineering

A Practical Framework for Executing

Complex Queries over Encrypted Multimedia

Data

FEARLESS engineering 8 / 89

Problem Definition

File Server

(No compute)

Result

I User wants to safely store documents in cloud storage

I User also wants to search the uploaded file

I We are using servers without computation capability, such as,
Google Drive, Dropbox, Box, Amazon S3, etc.

FEARLESS engineering 9 / 89

Searchable Encryption - Introduction

I Given a set of documents we encrypt the documents and
create an encrypted inverted index.

I Then encrypted document and inverted index is uploaded to
server

I To search we create special trapdoor from the input keyword
and sent to server

I Server then find documents using the trapdoor.

FEARLESS engineering 10 / 89

Target

Find photos of Jhon taken in last summer in Hawaii during sunset?

I Restriction: server does not support custom computation

FEARLESS engineering 11 / 89

Our Solution - ETL QP Frmework

Extract Transform Load

extracted feature
values,

inverted
 index,

Cloud File

Storage
encrypted

inverted index

Cloud File

Storage

Post-Process

Query
search

User

fetch relvant part
of encrypted index

false negative
reduction (optional)

display result

(a) Index creation, encryption and upload

(b) Query and post-process phase to search content

FEARLESS engineering 12 / 89

Extract

I Necessary features of documents are extracted in this phase.

I Features extractors are defined based on application need.

I Features can be defined by the user

I Output of this phase is feature, value pairs per document.

FEARLESS engineering 13 / 89

Extract - example

Di

Features

I (Location, (2116’42"N, 15750’02.8"W))

I (CreatedAt, 6/7/2018 7:00pm)

I (Aperture, 2.4)

I (ShutterSpeed, 1/100)

I (Faces, [(X:60, Y:34, H: 25, W: 32)])

We extract necessary features(i.e. meta-data) from images and
output sequence of tuples in the form

〈id(Di), (fa, vα), (fb, bβ), (fc, vγ)〉

FEARLESS engineering 14 / 89

Transform

I Generate signature value based on feature-value
combination

I Example: Location
I Input: 〈id(Di), (Location, (longitude, latitude)〉
I We look up the address of the geo location value and generate

search signatures based on country, state, city, address, etc.
I S1 = H(‘Location′ || ‘Country′ || Country Value)
I S2 = H(‘Location′ || ‘State′ || State Value)
I Output: 〈S1, id(Di)〉, 〈S2, id(Di)〉

FEARLESS engineering 15 / 89

Transform output example

Search
Signature Document ID List

(d) Inverted index,

FEARLESS engineering 16 / 89

Load - Overview

I Here we encrypt and load the inverted index to cloud file
server.

I We observe that distribution of the length of the document
list of search signatures can be approximated with Pareto
distribution.

I Based on that we further block the document list (details in
full version)

I Then we generate search signatures of the blocked
document list.

I And keep certain information in a cache.

FEARLESS engineering 17 / 89

Load - Algorithm

FEARLESS engineering 18 / 89

Query and Post Process - Overview

I Given a query we first extract and transform it

I Next we generate search signatures

I Generate trapdoors

I Get those trapdoor related information

I Then decrypt the document ids

I Finally, remove false positives (if necessary)

FEARLESS engineering 19 / 89

Query

FEARLESS engineering 20 / 89

Complex Feature: Face Recognition

EigenFace

I We normalize input face images
A = [Φ1 Φ2 . . .ΦM]

I Find eigen vectors (uj) of ATA

I Get top K eigen vectors

I Represent input Φi =
∑K

j=1wjuj ,

where weight wj = uTj Φi

I Calculate Ωi =
[
w1 w2 . . . wk

]T
,

which is the projection in eigen
space.

I To match, we normalize (Φq),
project (Ωq), and compute distance

w1

w2

w3

1

2

q

3

Faces in Eigen Space

FEARLESS engineering 21 / 89

Encrypted Eigenface Recognition - ETL

I Extract: Find face locations in image
I id(D1) : 〈‘Face′, (X:10px, Y:12px, H: 120px, W: 120px)〉

I Transform:
I Convert face to point in EigenFace Plane ω
I Define Euclidean LSH function
I bucket ids = Find LSH bucket ids of ω
I search signatures = generate signatures(bucket ids)

I Load:
I Upload search signatures and document assignments

FEARLESS engineering 22 / 89

Euclidean LSH

I Random LSH vector, ~e

I Input point/vector, ~u

I LSH line bucket length, b

I BucketId = Hash(u×cos θb , ê)

FEARLESS engineering 23 / 89

Encrypted Eigenface Recognition - QP

I Query:
I Given a new Face
I Convert to a point in eigen plane point
I Create bucket ids of previously defined LSH schema.
I Create search signatures of the bucket ids
I Now search the search search signatures in the encrypted

index

I Post Process:
I Remove the false positives due to LSH

FEARLESS engineering 24 / 89

Experiment - Features and DataSet

I Our prototype image storage system can handle 4 types of
features
I Location

I Find images based on location

I Time
I Find images that are taken on a specific time or in a time

range

I Texture and Color
I Find images that are similar, e.g., images of sunset, sky, etc.

I Face
I Find images of a particular person.

I Dataset: Randomly selected 20,109 images from YFCC100M
dataset.

FEARLESS engineering 25 / 89

Load time and Index Size

 100

 200

 300

 400

1k 3k 5k 7k 9k 11k 13k 15k 17k 19k

F
e
a
tu

re
 e

x
tr

a
c
t

ti
m

e
 (

m
in

)

Number of files

Date, Location, and FCTH extract time
Face extract time

Extract time

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

L
o
a
d
 T

im
e
 (

m
in

)

Number of files

Local server load time
Amazon S3 load time

Load time

FEARLESS engineering 26 / 89

Experiment - Query Time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

Q
u
er

y
 t

im
e

(s
ec

)

Number of files

FCTH query Face query

Similarity Query and
Face recognition Time

 0
 10
 20
 30
 40
 50
 60
 70
 80

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

Q
u
er

y
 t

im
e

(s
ec

)

Number of files

Date and location query
Date, location, and face query
Date, location, and FCTH query
Date, location, face, and FCTH query

Combination Query Time

FEARLESS engineering 27 / 89

Conclusion

I We have proposed a practical framework for performing
complex queries over encrypted multimedia data.

FEARLESS engineering 28 / 89

UT DALLAS Erik%Jonsson%School%of%Engineering%&%Computer%Science

FEARLESS engineering

SGX BigMatrix

A Practical Encrypted Data Analytic Framework with Trusted
Processors

FEARLESS engineering 29 / 89

Secure Data Analytics - with Outsourced Computation

I We outsource encrypted sensitive data

I We also want to perform secure computation in cloud

FEARLESS engineering 30 / 89

Secure Data Analytics - Approaches

Pure Cryptographic Approach

I Secure Multi-party
Computation

I Provides highest level of
security

I High computational cost

I Impractical for large data
processing

Trusted Hardware

I Cost effective

I Provides reasonable security

I Intel SGX is available in all
new processors

I Needs careful consideration
of side channel attacks

FEARLESS engineering 31 / 89

Background - Intel SGX Application

Untrusted Part

of App

Trusted Part

of App

I We only trust the processor and the code inside the
enclave (Intel, 2015)

FEARLESS engineering 32 / 89

Background - Intel SGX Impact

I We can outsource computation securely

I No need to trust the cloud provider (i.e. Hypervisor, OS,
Cloud administrators)

FEARLESS engineering 33 / 89

Threat Model

Server

Memory Processor

Enclave

Disk

Code & Data

Result

I Adversary can control OS (i.e. memory, disk, networking)

I Adversary can not temper with enclave code

I Adversary can not observe CPU register content

FEARLESS engineering 34 / 89

Challenges - Obliviousness

Challenge: Access Pattern Leakage

I SGX uses system memory, which is controlled by the adversary

I Adversary can observe memory accesses

I Memory access reveals a lot about the data (Islam, Kuzu, and
Kantarcioglu, 2012; Naveed, Kamara, and Wright, 2015)

Solution

I To reduce information leakage we ensure Data Obliviousness

FEARLESS engineering 35 / 89

Challenges - Obliviousness

Challenge: Access Pattern Leakage

I SGX uses system memory, which is controlled by the adversary

I Adversary can observe memory accesses

I Memory access reveals a lot about the data (Islam, Kuzu, and
Kantarcioglu, 2012; Naveed, Kamara, and Wright, 2015)

Solution

I To reduce information leakage we ensure Data Obliviousness

FEARLESS engineering 35 / 89

Data Obliviousness - Example

I Program executes same path for all input of same size

Example: Non-Oblivious swap method of Bitonic sort

if (dir == (arr[i] > arr[j])) {

int h = arr[i];

arr[i] = arr[j];

arr[j] = h;

}

FEARLESS engineering 36 / 89

Data Obliviousness - Example

I Program executes same path for all input of same size

Example: Non-Oblivious swap method of Bitonic sort

if (dir == (arr[i] > arr[j])) {

int h = arr[i];

arr[i] = arr[j];

arr[j] = h;

}

FEARLESS engineering 36 / 89

Data Obliviousness - Example (Cont.)

Example: Oblivious swap method of Bitonic sort

int x = arr[i];

int y = arr[j];

_asm{

...

mov eax , x

mov ebx , y

mov ecx , dir

cmp ebx , eax

setg dl

xor edx , ecx

mov eax , x

mov ecx , y

mov ebx , y

mov edx , x

cmovz eax , ecx

cmovz ebx , edx

mov [x], eax

mov [y], ebx

}

FEARLESS engineering 37 / 89

Data Obliviousness - Challenges

Challenge

I Building data obliviousness solution is non-trivial

I Requires a lot of time and effort

Solution

I We provide our own python (NumPy, Pandas) inspired
language that ensures data obliviousness

FEARLESS engineering 38 / 89

Data Obliviousness - Challenges

Challenge

I Building data obliviousness solution is non-trivial

I Requires a lot of time and effort

Solution

I We provide our own python (NumPy, Pandas) inspired
language that ensures data obliviousness

FEARLESS engineering 38 / 89

Data Oblivious - Vectorization

I We removed if and emphasis on vectorization

Example: Compute average income of people with age >= 50

sum = 0, count = 0

for i = 0 to Persons.length:

if Persons[i].age >= 50:

count++

sum += Persons[i]. income

print sum / count

FEARLESS engineering 39 / 89

Data Oblivious - Example

Example: Compute average income of people with age >= 50

S = where(Person , "Persons[‘age ’] >= 50")

print (S .* Persons[‘income ’]) / sum(S)

FEARLESS engineering 40 / 89

Challenge - Memory constraint

Challenge

I Current version of SGX (v1) allows only 90MB of memory
allocation

Solution

I We build flexible data blocking mechanism with efficient
and secure caching

I We build matrix manipulation library that supports blocking
and we call the abstraction BigMatrix

FEARLESS engineering 41 / 89

Challenge - Memory constraint

Challenge

I Current version of SGX (v1) allows only 90MB of memory
allocation

Solution

I We build flexible data blocking mechanism with efficient
and secure caching

I We build matrix manipulation library that supports blocking
and we call the abstraction BigMatrix

FEARLESS engineering 41 / 89

System Overview - SGX BigMatrix

Untrusted Trusted

Compiler
Block Size
Optimizer

Service Manager
BigMatrix Library

Intel SGX SDK

Execution
Engine

Block
Cache

OCalls

ECalls

Compiler

BMRT Client

ServerClient

SGX BigMatrix

FEARLESS engineering 42 / 89

BigMatrix Library

Untrusted Trusted

Compiler
Block Size
Optimizer

Service Manager
BigMatrix Library

Intel SGX SDK

Execution
Engine

Block
Cache

OCalls

ECalls

Compiler

BMRT Client

ServerClient

SGX BigMatrix - BigMatrix Library

FEARLESS engineering 43 / 89

BigMatrix Library

Operations in BigMatrix Library

I Data access operations - load, publish, get row, etc.

I Matrix Operations - inverse, multiply, element wise,
transpose, etc.

I Relational Algebra Operations - where, sort, join, etc.

I Data generation operations - rand, zeros, etc.

I Statistical Operations - norm, var

FEARLESS engineering 44 / 89

BigMatrix Library - Security Properties

I All the operations are data oblivious

I All the operations supports blocking

I We proved that combination of data oblivious operations is
also data oblivious (in Section 4)

I Data oblivious and blocking aware implementation details in
the paper

FEARLESS engineering 45 / 89

BigMatrix Library - Trace

I Each operation has fixed trace

I Trace is the information disclosed to adversary during
execution

I For example: operation type, input and output data size

Example: Trace of Matrix Multiplication C = A ∗B
I Instruction type (i.e. multiplication)

I Input Matrices size (i.e., A.rows,A.cols, B.rows,B.cols)

I Output Matrix size (i.e., C.rows,C.cols)

I Block size

I Oblivious memory read and write sequences, which does not
depend on data content

FEARLESS engineering 46 / 89

BigMatrix Library - Trace

I Each operation has fixed trace

I Trace is the information disclosed to adversary during
execution

I For example: operation type, input and output data size

Example: Trace of Matrix Multiplication C = A ∗B
I Instruction type (i.e. multiplication)

I Input Matrices size (i.e., A.rows,A.cols, B.rows,B.cols)

I Output Matrix size (i.e., C.rows,C.cols)

I Block size

I Oblivious memory read and write sequences, which does not
depend on data content

FEARLESS engineering 46 / 89

Exec. Engine & Block Cache

Untrusted Trusted

Compiler
Block Size
Optimizer

Service Manager
BigMatrix Library

Intel SGX SDK

Execution
Engine

Block
Cache

OCalls

ECalls

Compiler

BMRT Client

ServerClient

SGX BigMatrix - Execution Engine and Block Cache

FEARLESS engineering 47 / 89

Exec. Engine & Block Cache

Execution Engine

I Execute BigMatrix library operations

I Parse instruction in the form of

Var ASSIGN Operation (Var, Var, ...)

I Process sequence of instructions

I Maintain intermediate states required to execute complex
program, such as, variable to BigMatrix assignments

Block Cache

I Help with the decision when to remove a block from memory
based on next sequence of instructions

FEARLESS engineering 48 / 89

Exec. Engine & Block Cache - Security Properties

I Execution Engine and Block Cache is also data oblivious
given the input program is data oblivious

I Compiler warns about potential data leakage

I Adversary can not infer anything more about data, apart from
the trace of all the operations

FEARLESS engineering 49 / 89

Compiler

Untrusted Trusted

Compiler
Block Size
Optimizer

Service Manager
BigMatrix Library

Intel SGX SDK

Execution
Engine

Block
Cache

OCalls

ECalls

Compiler

BMRT Client

ServerClient

SGX BigMatrix - Compiler

FEARLESS engineering 50 / 89

Compiler

I Compiles our python inspired language into basic command

I It ensures data obliviousness by removing support for if

I We emphasis on operation vectorization

Input: Linear Regression

x = l o a d (‘ path / to / X Matr ix ’)
y = l o a d (‘ path / to / Y Matr ix ’)
x t = t r a n s p o s e (x)
t h e t a = i n v e r s e (x t ∗ x) ∗ x t ∗ y
p u b l i s h (t h e t a)

FEARLESS engineering 51 / 89

Compiler - Output

Output: Linear Regression

x = l o a d (X M a t r i x I D)
y = l o a d (Y M a t r i x I D)
x t = t r a n s p o s e (x)
t1 = m u l t i p l y (xt , x)
u n s e t (x)
t2 = i n v e r s e (t1)
u n s e t (t1)
t3 = m u l t i p l y (t2 , x t)
u n s e t (x t)
u n s e t (t2)
t h e t a = m u l t i p l y (t3 , y)
u n s e t (y)
u n s e t (t3)
p u b l i s h (t h e t a)

FEARLESS engineering 52 / 89

Compiler - Track data leakage

I We report against accidental data leakage through trace

I We check if any sensitive data is used in trace of any operation

I In our system, sensitive data - content of any BigMatrix,
content of intermediate variables

Example

X = load(‘path/to/X_Matrix ‘)

s = count(where(X[1] >= 0))

Y = zeros(s, 1)

publish(Y)

We report that zeros operation revealing sensitive data s

FEARLESS engineering 53 / 89

SQL Support

I We also support basic SQL

Input

I = sql(‘SELECT *

FROM person p

JOIN person_income pi (1)

ON p.id = pi.id

WHERE p.age > 50

AND pi.income > 100000 ’)

FEARLESS engineering 54 / 89

SQL Support (Cont.)

Output

t1 = where(person , ’C:3;V:50;O:=’)

person.age is in column 3

t2 = zeros(person.rows , 2)

t3 = get_column(person , 0)

person.id is in column 0

set_column(t2, 0, t3)

set_column(t2, 1, t1)

t4 = where(person_income , ’C:1;V:100000;O:=’)

t5 = zeros(person_income.rows , 2)

t6 = get_column(person_income , 0)

person_income.id is in column 0

set_column(t5, 1, t4)

set_column(t5, 0, t6)

A = join(t2, t5, ’c:t2.0;c:t2.0;O:=’, 1)

...
FEARLESS engineering 55 / 89

Block Size Optimizer

Untrusted Trusted

Compiler
Block Size
Optimizer

Service Manager
BigMatrix Library

Intel SGX SDK

Execution
Engine

Block
Cache

OCalls

ECalls

Compiler

BMRT Client

ServerClient

SGX BigMatrix - Block Size Optimizer

FEARLESS engineering 56 / 89

Block Size Optimizer - Intro & Design Decisions

I We observed that input block size has impact on
performances of the system

I Adversary doesn’t gain any knowledge about data based on
block size

I So, we find optimum block size for each instruction before
executing a program

I We explicitly do not want to perform optimization inside
enclave because
I Optimization libraries are large and complex, which can

introduce unintended security flaws
I Any efficient optimization algorithm will reveal information

about data
I So we only perform optimization on trace data, nothing else

FEARLESS engineering 57 / 89

Block Size Optimizer - Overview

I We generate DAG of execution graph
I Internal nodes represent operations
I Edges represent block conversions

I We know cost for each operation for different matrix and
block size

I Given input matrix sizes we can find optimized block size

I We can convert one block configuration to another and know
the cost of conversion

FEARLESS engineering 58 / 89

Block Size Optimizer - Example - Linear Regression

I Execution graph (DAG) of Θ = (XTX)−1XTY in liner
regression training phase

FEARLESS engineering 59 / 89

Block Size Optimizer - Example - LR Cost Function

Cost = Convert(X, (brX , bcX), (x0, x1))

+OP Cost(′Transpose′, X, (x0, x1))

+ Convert(XT , (x1, x0), (x2, x3))

+ Convert(X, (brX , bcX), (x4, x5))

+OP Cost(′Multiply′, [XT , X], [(x2, x3), (x4, x5)])

+ ...

We convert this into integer programming and solve it for all the
xn variables.

FEARLESS engineering 60 / 89

Experimental Evaluations

We implemented a prototype using Intel SGX SDK and observe
performance of different operations

Setup

I Processor Intel Core i7 6700

I Memory 64GB

I OS Windows 7

I SGX SDK Version 1.0

I Number of Machine 1

FEARLESS engineering 61 / 89

Performance Impact - Matrix Size

 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

 1.4x10
6

 0

 5
x10

6

 1
x10

7

 1
.5

x10
7

 2
x10

7

 2
.5

x10
7

M
at

ri
x

 M
u

lt
ip

li
ca

ti
o

n
 T

im
e

(m
s)

Matrix Elements

Unencrypted
Encrypted

Matrix Multiplication
(e.g. C = A ∗B)

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 6
00000

 6
50000

 7
00000

 7
50000

 8
00000

 8
50000

 9
00000

 9
50000

 1
x10

6

Jo
in

 t
im

e
(m

s)

Matrix Elements

Unencrypted
Encrypted

Oblivious Join

FEARLESS engineering 62 / 89

Performance Impact - Matrix Size - Summary

I We observe similar trends for all matrix operations

I We observe minimal overhead for encrypted computation

I However, the overhead depends on operation type

I More experimental evaluations in Section 5

FEARLESS engineering 63 / 89

Performance Impact - Block Size

Execution Time

 100
 200

 300
 400

 500
 100

 200

 300

 400

 500

 140

 145

 150

 155

 160

S
ca

la
r

O
p
er

at
io

n
 T

im
e

(m
s)

Scalar Multiplication

Execution Time

 100
 200

 300
 400

 500
 100

 200

 300

 400

 500

 18000

 18400

 18800

 19200

 19600

 20000

M
at

ri
x
 M

u
lt

ip
li

ca
ti

o
n
 T

im
e

(m
s)

Matrix Multiplication

FEARLESS engineering 64 / 89

Performance Impact - Block Size - Summary

I We observe execution time increases with block size

I Also, very small block size increases execution time, due to
blocking overhead

I As a result, we performed optimization

FEARLESS engineering 65 / 89

Comparison with ObliVM

I We compare performance of SGX-BigMatrix with ObliVM for
two-party matrix multiplication

I We observe that SGX-BigMatrix is magnitude faster because
we are utilizing hardware and do not require expensive over
the network communication

Matrix ObliVM BigMatrix BigMatrix
Dimension SGX Enc. SGX Unenc.

100 28s 660ms 10ms 10ms
250 7m 0s 90ms 93ms 88ms
500 53m 48s 910ms 706.66ms 675.66ms
750 2h 59m 40s 990ms 2s 310ms 2s 260ms

1,000 6h 34m 17s 900ms 10s 450ms 10s 330ms

Table: Two-party matrix multiplication time in ObliVM vs BigMatrix

FEARLESS engineering 66 / 89

Case Studies - Page Rank

I Performed Page Rank on three popular datasets

I Each dataset contains directed graph

Data Set Nodes BigMatrix Encrypted

Wiki-Vote 7,115 97s 560ms
Astro-Physics 18,772 6m 41s 200ms
Enron Email 36,692 23m 19s 700ms

Table: Page Rank on real datasets

FEARLESS engineering 67 / 89

Conclusion

I We propose a practical data analytics framework with SGX

I We present BigMatrix abstraction to handle large matrices in
constrained environment

I We proposed a programming abstraction for secure data
analytics

I We applied our system to solve real world problems

FEARLESS engineering 68 / 89

UT DALLAS Erik%Jonsson%School%of%Engineering%&%Computer%Science

FEARLESS engineering

SGX IR

Secure Information Retrieval with Trusted Processors

FEARLESS engineering 69 / 89

Problem - Secure Cloud based Information Retrieval System

Encrypted Intermediate Data

Encrypted Result

Pre-Processing

Encrypted Search Query

Final Processing

I We want to build a secure information retrieval system

I Build index securely in the cloud

I Allow secure information retrieval

FEARLESS engineering 70 / 89

Supported document and query types

I Text Data
I Ranked document retrieval using TF-IDF (Token Frequency

and Inverse Document Fequency)

I Image Data
I Face recognition using Eigenface

FEARLESS engineering 71 / 89

Text pre-processing in client

Tokenization
Stemming

TokenID
Generation

Cryptography is
the practice and

study of techniques
for secure

communication ...

cryptographi
practic studi

techniqu secur
commun

cryptographi

practic

studi

techniqu

secur

1

2

3

4

5

Encrypted
BigMatrix
Generation

tok-id

1

2

3

doc-id

11

1

1

...

freq

...

2

10

6

...

I We tokenize and stem the input text files

I We build a matrix I with token id, document id, and
frequency columns

I Finally, we encrypt I and upload

I Single round of read and write is required

FEARLESS engineering 72 / 89

Text Indexing - Server

doc-idtok-id freq

1 1 2
2 1 3
...

8 2 1
1 2 5
...

17 3 8
1 4 1
...

Sort Count & Sum Sort and

Adjust

doc-idtok-id freq

1 1 2
1 2 5

...

1 4 1
...

2 1 3

2 5 10

3 6 4

...

counttok-id sum

1 0 0
#
...

2 8 20
#
...

3 4 9
#
...

counttok-id sum

1 8 20

2 4 9

3 7 15
4 5 3

#
...

...

5 1 2

6 1 1

I I ′ ← Obliviously sort I on token id column
I We generate U , to keep count and sum of frequencies

I c← I ′[i].token id 6= I ′[i− 1].tok id
I U [i].sum← obliviousSelect(sum,#, 1, c)
I sum← obliviousSelect(sum, 0, 1, c) + I[i].frequency

I Finally, we adjust one space up to put

FEARLESS engineering 73 / 89

Oblivious Select

oblivousSelect(a, b, x, y):

...

mov %[x],%%eax

mov %[y],%%ebx

xor %%eax , %%ebx

...

mov %[a],%%ecx

mov %[b],%%edx

cmovz %%ecx ,%%edx

...

mov %%edx , %[out]

FEARLESS engineering 74 / 89

Bucket size optimization

I We split token into smaller buckets to reduce dummy entries

I We optimize bucket size b from count column of U ′

I Total buckets for ith token dU
′[i].count

b e
I Elements in last bucket U ′[i].count%b
I So, padding for ith token b− U ′[i].count%b

FEARLESS engineering 75 / 89

Padding Generation

We regenerate token id with bucket number function σ (J)

doc-idtok-id freq

1 1 2
1 2 5

...

1 4 1
...

2 1 3

2 5 10

3 6 4

...

Regenerate
 TokenId

doc-idtok-id freq

1,0 1 2

7 2

...

1 3

9 10
...

1,1
...

2,0
...

2,1

9 103,0

We generate padding (X)

Generate
Padding Rows

counttok-id sum

1 8 20

2 4 9

3 7 15
4 5 3

#
...

...

5 1 2

6 1 1

doc-idtok-id freq

1,1 # #
...

...

...

2,1
...

3,1

#

#

#

#

FEARLESS engineering 76 / 89

Padding Generation - Algorithm

1: for i = 0 to numToken do
2: for j = b− 1 to 0 do
3: c← U ′[i].count%b < j

4: t← σ(U ′[i].token id, bU
′[i].count

b c)
5: X[i ∗ b+ j].token id← obliviousSelect(t,#, 1, c)
6: end for
7: end for

For each token we generate b rows, among that b− U ′[i].count%b
rows have proper token id, remaining are totally dummy

FEARLESS engineering 77 / 89

Final token frequency table generation

I Finally we merge and sort X and J to get the T matrix.

I On T we run term frequency functions

1 + log(tft,d)

I On U ′ we run document frequency functions, such as, IDF

log
N

dft

I Query result we use T for TF and U ′ for IDF

FEARLESS engineering 78 / 89

Bitonic Sorting of Arbitrary N

I Bitonic sort [Batcher, 1968] needs input to be size of 2k

I Introduces huge overhead, when k is large

I We use arbitrary length version [Lang, 1998]

I However, this is recursive and SGX is memory constrained
environment

I So we propose a non-recursive algorithm

FEARLESS engineering 79 / 89

Bitonic Sorting of Arbitrary N - Concept

Concept

I We can express a number as
N = 2xm+...+2x3+2x2+2x1

I Merge can sort a descending
and an ascending block into
ascending order

I We sort then merge from
smallest to biggest block

Sort Merge

FEARLESS engineering 80 / 89

Bitonic Sorting Arbitrary N - Non-recursive Algorithm

1: for d = 0 to dlog2(N)e do
2: if ((N >> d) & 1) 6= 0 then
3: start← (−1 << (d+ 1)) & N
4: size← 1 << d
5: dir ← (size & N &−N) 6= 0
6: bitonicSort2K(start, size, dir)
7: if !dir then
8: bitonicMerge(start,N − start, 1)
9: end if

10: end if
11: end for

FEARLESS engineering 81 / 89

Experimental Result

 0

 5

 10

 15

 20

 25

 30

 0

 5
x10

6

 1
x10

7

 1
.5

x10
7

 2
x10

7

 2
.5

x10
7

 3
x10

7

 3
.5

x10
7

S
o

rt
in

g
 t

im
e

(m
in

)

Number of rows

Sorting time
Sorting time next 2

k

Bitonic sort

 0
 20
 40
 60
 80

 100
 120
 140
 160

 9
50

 1
000

 1
050

 1
100

 1
150

 1
200

 1
250

 1
300

 1
350

In
d

ex
 p

re
p

ar
at

io
n

 (
se

c)

Data set size (MB)

Encryption only
Incremental id

MD5 hash
SHA256 hash
Murmur hash

Client end processing cost

FEARLESS engineering 82 / 89

Experimental Result

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 9
50

 1
000

 1
050

 1
100

 1
150

 1
200

 1
250

 1
300

 1
350

In
d

ex
in

g
 t

im
e

(m
in

)

Data set size (MB)

Oblivious index building
Non-Oblivious index building

SGX index processing

 0

 0.2

 0.4

 0.6

 0.8

 1

 9
50

 1
000

 1
050

 1
100

 1
150

 1
200

 1
250

 1
300

 1
350

N
D

C
G

 S
co

re

Data set size (MB)

NDCG Score compare to Lucene

NDCG results compare to Apace
Lucene

FEARLESS engineering 83 / 89

Face Recognition Indexing

I We adopt EigenFace

I Pre-processing and finding images are simple matrix
operations

I Core problem to solve obliviously is eigenvector calculation

I We adopt Jacobi method of eigenvector calculation

FEARLESS engineering 84 / 89

Eigenvector Calculation - Jacobi Method

Oblivious
Value Extract

Oblivious
Column Extract

Rotate

Oblivious
Column Assign

Oblivious
Row Assign

Calculate
& Ressign

We find the max off-diagonal element at Ak,l, then rotate column
k and l. Repeat until A becomes diagonal. The diagonal values
are eigen values.

FEARLESS engineering 85 / 89

Oblivious Jacobi eigenvector calculation - Algorithm

E ← identity(n)
ε1 ← 10−12, ε2 ← 10−36

for it = 0 to n2

max, k, l← oMaxIndex(A)
C = max < ε1
U ← oColExtract(A, k)
V ← oColExtract(A, l)
kk ← oV alueExtract(U, k)
ll← oV alueExtract(V, l)
d = ll − kk
m = |max| < ε2|d|

p← d
2×max

t1 ← max
d

t2 ← | 1

|p|+
√
p2+1
|

t← oSelect(t1, t2,m, 1)
c = 1√

t2+1
s = t× c
τ = s

1+c

R = s.

[
−τ −1
1 −τ

]
[
U
V

]
+ = R×

[
U
V

]

FEARLESS engineering 86 / 89

Oblivious Jacobi eigenvector calculation - Algorithm(Cont.)

kk ← kk − t×max
ll← ll + t×max
oV alueAssign(U, k, kk)
oV alueAssign(V, l, ll)
oV alueAssign(U, l, 0)
oV alueAssign(V, k, 0)
oCondColAssign(A,U, k, !C)
oCondColAssign(A, V, l, !C)
oCondRowAssign(A,U, k, !C)
oCondRowAssign(A, V, l, !C)

U ← oColExtract(E, k)
V ← oColExtract(E, l)[
U
V

]
+ = R×

[
U
V

]
oCondColAssign(E,U, k, !C)
oCondColAssign(E, V, l, !C)
end for

Vi ← Ai,i, ∀i ∈ 0 to n
normalize(E)
sort(E) based on V

FEARLESS engineering 87 / 89

Experimental Result - Eigenvector calculation

 15

 20

 25

 30

 35

 40

 8
00

 8
50

 9
00

 9
50

 1
000

 1
050

 1
100

 1
150

 1
200

S
ca

li
n

g
 a

n
d

 p
ro

je
ct

 t
im

e
(s

ec
)

Number of faces

Scaling and project time (sec)

Pre-processing overhead

 0

 200

 400

 600

 800

 1000

 1200

 0

 5
0000

 1
00000

 1
50000

 2
00000

 2
50000

 3
00000

 3
50000

 4
00000

C
a
lc

u
la

ti
o

n
 t

im
e
 (

m
in

)

Matrix elements

Eigen calculation time

FEARLESS engineering 88 / 89

Thank You

Questions / Comments

FEARLESS engineering 89 / 89

