# Secure Cloud Data Analytics with Trusted Processors

Fahad Shaon

The University of Texas at Dallas

**UT DALLAS** 



## Introduction

- Cloud computing is ubiquitous
  - No upfront infrastructure cost
  - Speed
  - Scale as needed
- Market is still growing fast
  - Market size: 2018 \$182.4B, 2022 - \$331.2B





## Cloud computing - Issue

#### Security breaches are very frequent now-a-days





FEARLESS engineering



## Security Breach in Cloud Context

- Third-party vendor system had publicly accessible AWS S3 bucket
- Impact: 6 million records were compromised
- Solution: Enable encryption in the S3 bucket

#### 1HE VERGE

#### Verizon partner data breach exposes millions of customer records

Accessed through an unprotected Amazon S3 storage server

By Dani Deahl | @danideahl | Jul 12, 2017, 7:53pm EDT





## Data Analytics on Cloud - Issues



#### Some Issues

- Sensitive data (e.g., medical, financial data) exposure
- Highly vulnerable to insider attack
- Service provider can observe the data and patterns





## One Solution - Secure Data Analytics on Cloud



- We do not trust the cloud, unless it has trusted processor
- We only outsource encrypted data
- However, encrypted data is difficult to analyze



- A Practical Framework for Executing Complex Queries over Encrypted Multimedia Data [DBSec 2016]
- SGX BigMatrix: A Practical Encrypted Data Analytic Framework with Trusted Processors [CCS 2017]
- ► SGX IR: Secure Information Retrieval with Trusted Processors

## A Practical Framework for Executing Complex Queries over Encrypted Multimedia Data



## **Problem Definition**



- User wants to safely store documents in cloud storage
- User also wants to search the uploaded file
- We are using servers without computation capability, such as, Google Drive, Dropbox, Box, Amazon S3, etc.



## Searchable Encryption - Introduction

- Given a set of documents we encrypt the documents and create an encrypted inverted index.
- Then encrypted document and inverted index is uploaded to server
- To search we create special trapdoor from the input keyword and sent to server
- Server then **find** documents using the trapdoor.









#### Find photos of Jhon taken in last summer in Hawaii during sunset?



Restriction: server does not support custom computation





## Our Solution - ETL QP Frmework



(b) Query and post-process phase to search content



- ► Necessary features of documents are extracted in this phase.
- Features extractors are defined based on application need.
- Features can be defined by the user
- Output of this phase is feature, value pairs per document.



## Extract - example



 $D_i$ 

#### Features

- ▶ (Location, (2116'42"N, 15750'02.8"₩))
- ▶ (CreatedAt, 6/7/2018 7:00pm)
- ► (*Aperture*, 2.4)
- $\blacktriangleright$  (ShutterSpeed, 1/100)
- ▶ (*Faces*, [(X:60, Y:34, H: 25, W: 32)])

We extract necessary features (i.e. meta-data) from images and output sequence of tuples in the form

```
\langle id(D_i), (f_a, v_{\alpha}), (f_b, b_{\beta}), (f_c, v_{\gamma}) \rangle
```



- Generate signature value based on feature-value combination
- ► Example: Location
  - ▶ Input:  $\langle id(D_i), (Location, (longitude, latitude) \rangle$
  - We look up the address of the geo location value and generate search signatures based on country, state, city, address, etc.
  - ►  $S_1 = H(`Location' || `Country' || Country_Value)$
  - ►  $S_2 = H(`Location' || `State' || State_Value)$
  - Output:  $\langle S_1, id(D_i) \rangle, \langle S_2, id(D_i) \rangle$



## Transform output example

| Search<br>Signature | Document ID List            |
|---------------------|-----------------------------|
| $s_1$               | $id(D_1), id(D_3)$          |
| $s_2$               | $id(D_1), id(D_2), id(D_4)$ |
| $s_3$               | $id(D_1), id(D_3), id(D_4)$ |
| $s_4$               | $id(D_2)$                   |
| $s_5$               | $id(D_4)$                   |

(d) Inverted index,  ${\cal I}$ 



- Here we encrypt and load the inverted index to cloud file server.
- We observe that distribution of the length of the document list of search signatures can be approximated with Pareto distribution.
- Based on that we further block the document list (details in full version)
- Then we generate search signatures of the blocked document list.
- And keep certain information in a cache.





Algorithm 1 Load encrypted index

- 1: Require: K = Master key,  $\mathcal{I} =$  Inverted index of search signatures,  $\mathcal{C} =$  Synchronized cache,  $K_C =$  encryption key for cache,  $\mathcal{Z} =$  File storage server.
- 2:  $b \leftarrow optimize(\mathcal{I})$
- 3: for all signature s in  $\mathcal{I}$  do
- 4:  $blocks_s \leftarrow \lceil \frac{|\mathcal{I}[s]|}{b} \rceil$ 5: **for**  $j = 1 \rightarrow blocks_s$  **do**
- 6:  $T_j^s \leftarrow H(K, s \parallel j \parallel C_1), K_j^s \leftarrow H(K, s \parallel j \parallel C_2)$
- 7:  $sub \leftarrow \mathcal{I}[s].slice((j-1) \times b, j \times b)$
- 8:  $\mathcal{E}[T_j^s] \leftarrow \varphi(K_j^s, pad(sub))$
- 9: end for
- 10:  $\mathcal{C}.freq[s] \leftarrow |\mathcal{I}[s]|$
- 11: end for
- 12: for all trapdoor t in  $\mathcal{E}$  do
- 13:  $\mathcal{Z}.write(t, \mathcal{E}[t])$
- 14: end for
- 15:  $C_{sig} \leftarrow H(K_C \parallel C_3, 1)$
- 16:  $\mathcal{Z}.write(C_{sig}, \varphi(K_C, \mathcal{C}))$



- Given a query we first extract and transform it
- Next we generate search signatures
- Generate trapdoors
- Get those trapdoor related information
- ► Then decrypt the document ids
- ► Finally, remove false positives (if necessary)



#### Algorithm 2 Query

1: Require: K = Master key, q = Query, b = block size,  $\mathcal{Z} =$  File storage server 2:  $\mathcal{Q} \leftarrow \text{Extract} \text{ and Transform } q$ 3: for all search signatures s in Q do  $blocks_s \leftarrow \left\lceil \frac{C.freq[s]}{h} \right\rceil$ 4: 5. for  $i = 1 \rightarrow blocks_s$  do 6:  $T_i^s \leftarrow H(K, s \parallel j \parallel C_1), K_i^s \leftarrow H(K, s \parallel j \parallel C_2)$ 7:  $L \leftarrow \mathcal{Z}.read(T_i^s)$ add  $\varphi^{-1}(K_i^s, L)$  in  $\mathcal{R}[s]$ 8: end for 9: 10: end for 11: return  $\mathcal{R}$ 





## Complex Feature: Face Recognition

#### EigenFace

- We normalize input face images  $A = [\Phi_1 \ \Phi_2 \dots \Phi_M]$
- Find eigen vectors  $(u_j)$  of  $A^T A$
- Get top K eigen vectors
- Represent input  $\Phi_i = \sum_{j=1}^K w_j u_j$ , where weight  $w_j = u_j^T \Phi_i$
- Calculate  $\Omega_i = \begin{bmatrix} w_1 \ w_2 \ \dots \ w_k \end{bmatrix}^T$ , which is the projection in eigen space.
- To match, we normalize (Φ<sub>q</sub>), project (Ω<sub>q</sub>), and compute distance



Faces in Eigen Space





#### Extract: Find face locations in image

▶  $id(D_1)$  : ('*Face*', (X:10px, Y:12px, H: 120px, W: 120px))

#### ► Transform:

- Convert face to point in EigenFace Plane  $\omega$
- Define Euclidean LSH function
- ▶  $bucket_ids = Find LSH$  bucket ids of  $\omega$
- $search\_signatures = generate\_signatures(bucket\_ids)$

#### ► Load:

► Upload *search\_signatures* and document assignments



## Euclidean LSH



- ▶ Random LSH vector,  $\vec{e}$
- ▶ Input point/vector,  $\vec{u}$
- $\blacktriangleright$  LSH line bucket length, b

• 
$$BucketId = Hash(\frac{u \times \cos \theta}{b}, \hat{e})$$



## Encrypted Eigenface Recognition - QP

#### ► Query:

- ► Given a new Face
- Convert to a point in eigen plane point
- ► Create *bucket\_ids* of previously defined LSH schema.
- Create search\_signatures of the bucket\_ids
- ► Now search the search *search\_signatures* in the encrypted index

#### Post Process:

Remove the false positives due to LSH





## Experiment - Features and DataSet

- Our prototype image storage system can handle 4 types of features
  - Location
    - Find images based on location
  - ► Time
    - Find images that are taken on a specific time or in a time range
  - Texture and Color
    - Find images that are similar, e.g., images of sunset, sky, etc.
  - ► Face
    - ► Find images of a particular person.
- Dataset: Randomly selected 20,109 images from YFCC100M dataset.



## Load time and Index Size



#### Load time



## Experiment - Query Time



# Similarity Query and Face recognition Time

Combination Query Time

We have proposed a practical framework for performing complex queries over encrypted multimedia data.



## SGX BigMatrix

#### A Practical Encrypted Data Analytic Framework with Trusted Processors



## Secure Data Analytics - with Outsourced Computation



- ► We outsource encrypted *sensitive* data
- ► We also want to perform secure **computation** in cloud



#### Pure Cryptographic Approach

- Secure Multi-party Computation
- Provides highest level of security
- ► High computational cost
- Impractical for large data processing

#### Trusted Hardware

- Cost effective
- Provides reasonable security
- Intel SGX is available in all new processors
- Needs careful consideration of side channel attacks





## Background - Intel SGX Application



 We only trust the processor and the code inside the enclave (Intel, 2015)



## Background - Intel SGX Impact



- We can outsource computation securely
- No need to trust the cloud provider (i.e. Hypervisor, OS, Cloud administrators)





## Threat Model



- Server
- Adversary can control OS (i.e. memory, disk, networking)
- Adversary can not temper with enclave code
- Adversary can not observe CPU register content



#### Challenge: Access Pattern Leakage

- ► SGX uses system memory, which is controlled by the adversary
- Adversary can observe memory accesses
- Memory access reveals a lot about the data (Islam, Kuzu, and Kantarcioglu, 2012; Naveed, Kamara, and Wright, 2015)



#### Challenge: Access Pattern Leakage

- ► SGX uses system memory, which is controlled by the adversary
- Adversary can observe memory accesses
- Memory access reveals a lot about the data (Islam, Kuzu, and Kantarcioglu, 2012; Naveed, Kamara, and Wright, 2015)

#### Solution

► To reduce information leakage we ensure Data Obliviousness






Program executes same path for all input of same size

Example: Non-Oblivious swap method of Bitonic sort



### Data Obliviousness - Example (Cont.)

#### Example: Oblivious swap method of Bitonic sort

| <pre>int x = arr[i];</pre> | mov eax, x     |
|----------------------------|----------------|
| <pre>int y = arr[j];</pre> | mov ecx, y     |
| _asm{                      | mov ebx, y     |
|                            | mov edx, x     |
| mov eax, x                 |                |
| mov ebx, y                 | cmovz eax, ecx |
| mov ecx, dir               | cmovz ebx, edx |
| cmp ebx, eax               | mov [x], eax   |
| setg dl                    | mov [y], ebx   |
|                            | }              |

#### xor edx, ecx

#### Challenge

- Building data obliviousness solution is non-trivial
- Requires a lot of time and effort



#### Challenge

- Building data obliviousness solution is non-trivial
- Requires a lot of time and effort

### Solution

 We provide our own python (NumPy, Pandas) inspired language that ensures data obliviousness



We removed if and emphasis on vectorization

**Example:** Compute average income of people with age >= 50

```
sum = 0, count = 0
for i = 0 to Persons.length:
    if Persons[i].age >= 50:
        count++
        sum += Persons[i].income
print sum / count
```



**Example:** Compute average income of people with age >= 50



#### Challenge

 Current version of SGX (v1) allows only 90MB of memory allocation





### Challenge

 Current version of SGX (v1) allows only 90MB of memory allocation

### Solution

- We build flexible data blocking mechanism with efficient and secure caching
- We build matrix manipulation library that supports blocking and we call the abstraction BigMatrix





### System Overview - SGX BigMatrix



SGX BigMatrix



UTD

## **BigMatrix Library**



Client

Server

### SGX BigMatrix - BigMatrix Library





#### **Operations in BigMatrix Library**

- ▶ Data access operations load, publish, get\_row, etc.
- Matrix Operations inverse, multiply, element\_wise, transpose, etc.
- Relational Algebra Operations where, sort, join, etc.
- ▶ Data generation operations rand, zeros, etc.
- Statistical Operations norm, var



- ► All the operations are **data oblivious**
- ► All the operations supports **blocking**
- We proved that combination of data oblivious operations is also data oblivious (in Section 4)
- Data oblivious and blocking aware implementation details in the paper

# **BigMatrix Library - Trace**

- Each operation has fixed trace
- Trace is the information disclosed to adversary during execution
- ► For example: operation type, input and output data size



# **BigMatrix Library - Trace**

- Each operation has fixed trace
- Trace is the information disclosed to adversary during execution
- ► For example: operation type, input and output data size

#### **Example:** Trace of Matrix Multiplication C = A \* B

- Instruction type (i.e. multiplication)
- ▶ Input Matrices size (i.e., A.rows, A.cols, B.rows, B.cols)
- ► Output Matrix size (i.e., *C.rows*, *C.cols*)
- Block size
- Oblivious memory read and write sequences, which does not depend on data content



### Exec. Engine & Block Cache



Client

Server

SGX BigMatrix - Execution Engine and Block Cache



# Exec. Engine & Block Cache

### **Execution Engine**

- Execute BigMatrix library operations
- Parse instruction in the form of

Var ASSIGN Operation (Var, Var, ...)

- Process sequence of instructions
- Maintain intermediate states required to execute complex program, such as, variable to BigMatrix assignments

#### Block Cache

Help with the decision when to remove a block from memory based on next sequence of instructions



- Execution Engine and Block Cache is also data oblivious given the input program is data oblivious
- Compiler warns about potential data leakage
- Adversary can not infer anything more about data, apart from the trace of all the operations



# Compiler



Client

Server

#### SGX BigMatrix - Compiler





- Compiles our python inspired language into basic command
- ► It ensures *data obliviousness* by removing support for *if*
- We emphasis on operation vectorization

Input: Linear Regression



### Compiler - Output

#### **Output: Linear Regression**

```
x = load(X_Matrix_ID)
y = load(Y_Matrix_ID)
xt = transpose(x)
t1 = multiply(xt, x)
unset(x)
t2 = inverse(t1)
unset(t1)
t3 = multiply(t2, xt)
unset(xt)
unset(t2)
theta = multiply (t3, y)
unset(y)
unset(t3)
```



- ► We report against accidental data leakage through trace
- ► We check if any *sensitive data* is used in trace of any operation
- In our system, sensitive data content of any BigMatrix, content of intermediate variables

Example

We report that zeros operation revealing sensitive data s



```
► We also support basic SQL
Input
I = sql('SELECT *
FROM person p
JOIN person_income pi (1)
ON p.id = pi.id
WHERE p.age > 50
AND pi.income > 100000')
```



# SQL Support (Cont.)

#### Output

```
t1 = where(person, 'C:3; V:50; 0:=')
    # person.age is in column 3
t2 = zeros(person.rows, 2)
t3 = get_column(person, 0)
    # person.id is in column 0
set_column(t2, 0, t3)
set_column(t2, 1, t1)
t4 = where(person_income, 'C:1;V:100000;O:=')
t5 = zeros(person_income.rows, 2)
t6 = get_column(person_income, 0)
    # person_income.id is in column 0
set_column(t5, 1, t4)
set_column(t5, 0, t6)
A = join(t2, t5, 'c:t2.0; c:t2.0; 0:=', 1)
```

### Block Size Optimizer



Client

Server

#### SGX BigMatrix - Block Size Optimizer





# Block Size Optimizer - Intro & Design Decisions

- We observed that input block size has impact on performances of the system
- Adversary doesn't gain any knowledge about data based on block size
- So, we find optimum block size for each instruction before executing a program
- We explicitly do not want to perform optimization inside enclave because
  - Optimization libraries are large and complex, which can introduce unintended security flaws
  - Any efficient optimization algorithm will reveal information about data
  - ► So we only perform optimization on *trace* data, nothing else



### Block Size Optimizer - Overview

- ► We generate DAG of execution graph
  - Internal nodes represent operations
  - Edges represent block conversions
- We know cost for each operation for different matrix and block size
- Given input matrix sizes we can find optimized block size
- We can convert one block configuration to another and know the cost of conversion





### Block Size Optimizer - Example - Linear Regression



• Execution graph (DAG) of  $\Theta = (X^T X)^{-1} X^T Y$  in liner regression training phase



$$Cost = Convert(X, (br_X, bc_X), (x_0, x_1)) + OP_Cost('Transpose', X, (x_0, x_1)) + Convert(X^T, (x_1, x_0), (x_2, x_3)) + Convert(X, (br_X, bc_X), (x_4, x_5)) + OP_Cost('Multiply', [X^T, X], [(x_2, x_3), (x_4, x_5)]) + ...$$

We convert this into integer programming and solve it for all the  $\ensuremath{\boldsymbol{x_n}}$  variables.

We implemented a prototype using Intel SGX SDK and observe performance of different operations

#### Setup

- Processor Intel Core i7 6700
- ► Memory 64GB
- ► OS Windows 7
- **SGX SDK Version** 1.0
- ► Number of Machine 1



### Performance Impact - Matrix Size





- ▶ We observe similar trends for all matrix operations
- ► We observe minimal overhead for encrypted computation
- However, the overhead depends on operation type
- ▶ More experimental evaluations in Section 5



### Performance Impact - Block Size



#### Scalar Multiplication

Matrix Multiplication



- ▶ We observe execution time increases with block size
- Also, very small block size increases execution time, due to blocking overhead
- ► As a result, we performed optimization



### Comparison with ObliVM

- We compare performance of SGX-BigMatrix with ObliVM for two-party matrix multiplication
- We observe that SGX-BigMatrix is magnitude faster because we are utilizing hardware and do not require expensive over the network communication

| Matrix    | ObliVM           | BigMatrix | BigMatrix  |
|-----------|------------------|-----------|------------|
| Dimension |                  | SGX Enc.  | SGX Unenc. |
| 100       | 28s 660ms        | 10ms      | 10ms       |
| 250       | 7m 0s 90ms       | 93ms      | 88ms       |
| 500       | 53m 48s 910ms    | 706.66ms  | 675.66ms   |
| 750       | 2h 59m 40s 990ms | 2s 310ms  | 2s 260ms   |
| 1,000     | 6h 34m 17s 900ms | 10s 450ms | 10s 330ms  |

Table: Two-party matrix multiplication time in ObliVM vs BigMatrix



- Performed Page Rank on three popular datasets
- Each dataset contains directed graph

| Data Set      | Nodes  | BigMatrix Encrypted |
|---------------|--------|---------------------|
| Wiki-Vote     | 7,115  | 97s 560ms           |
| Astro-Physics | 18,772 | 6m 41s 200ms        |
| Enron Email   | 36,692 | 23m 19s 700ms       |

Table: Page Rank on real datasets


- ► We propose a practical data analytics framework with SGX
- We present BigMatrix abstraction to handle large matrices in constrained environment
- We proposed a programming abstraction for secure data analytics
- ► We applied our system to solve real world problems



# SGX IR

#### Secure Information Retrieval with Trusted Processors



### Problem - Secure Cloud based Information Retrieval System



- ▶ We want to build a secure information retrieval system
- Build index securely in the cloud
- Allow secure information retrieval





### Supported document and query types

#### Text Data

 Ranked document retrieval using TF-IDF (Token Frequency and Inverse Document Fequency)

#### Image Data

Face recognition using Eigenface



### Text pre-processing in client



- We tokenize and stem the input text files
- We build a matrix I with token\_id, document\_id, and frequency columns
- ► Finally, we encrypt *I* and upload
- Single round of read and write is required



### Text Indexing - Server



- $I' \leftarrow \text{Obliviously sort } I \text{ on } token_id \text{ column}$
- We generate  $\mathcal{U}$ , to keep *count* and *sum* of frequencies
  - $\blacktriangleright \ c \leftarrow I'[i].token\_id \neq I'[i-1].tok\_id$
  - $\blacktriangleright \ \mathcal{U}[i].sum \leftarrow obliviousSelect(sum, \#, 1, c)$
  - $\blacktriangleright \ sum \leftarrow obliviousSelect(sum, 0, 1, c) + I[i].frequency$

Finally, we adjust one space up to put



```
oblivousSelect(a, b, x, y):
. . .
mov %[x],%%eax
mov %[y],%%ebx
xor %%eax, %%ebx
. . .
mov %[a],%%ecx
mov %[b],%%edx
cmovz %%ecx,%%edx
. . .
mov %%edx, %[out]
```



- ▶ We split token into smaller buckets to reduce dummy entries
- We optimize bucket size b from count column of  $\mathcal{U}'$
- Total buckets for  $i^{th}$  token  $\left\lceil \frac{\mathcal{U}'[i].count}{b} \right\rceil$
- Elements in last bucket  $\mathcal{U}'[i].count\%b$
- ▶ So, padding for  $i^{th}$  token b U'[i].count%b



### Padding Generation

We regenerate token id with bucket number function  $\sigma$  (J)



#### We generate padding (X)





7: end for

For each token we generate b rows, among that  $b - \mathcal{U}'[i].count\%b$  rows have proper  $token\_id$ , remaining are totally dummy



### Final token frequency table generation

- Finally we merge and sort X and J to get the  $\mathcal{T}$  matrix.
- On  $\mathcal{T}$  we run **term frequency** functions

 $1 + log(tf_{t,d})$ 

• On  $\mathcal{U}'$  we run **document** frequency functions, such as, IDF

$$log \frac{N}{df_t}$$

• Query result we use  ${\mathcal T}$  for TF and  ${\mathcal U}'$  for IDF





- Bitonic sort [Batcher, 1968] needs input to be size of  $2^k$
- Introduces huge overhead, when k is large
- ► We use arbitrary length version [Lang, 1998]
- However, this is recursive and SGX is memory constrained environment
- So we propose a non-recursive algorithm



# Bitonic Sorting of Arbitrary N - Concept

#### Concept

- We can express a number as  $N = 2^{x_m} + \ldots + 2^{x_3} + 2^{x_2} + 2^{x_1}$
- Merge can sort a descending and an ascending block into ascending order
- We sort then merge from smallest to biggest block





## Bitonic Sorting Arbitrary N - Non-recursive Algorithm

1: for 
$$d = 0$$
 to  $\lceil log_2(N) \rceil$  do  
2: if  $((N >> d) \& 1) \neq 0$  then  
3:  $start \leftarrow (-1 << (d+1)) \& N$   
4:  $size \leftarrow 1 << d$   
5:  $dir \leftarrow (size \& N \& -N) \neq 0$   
6:  $bitonicSort2K(start, size, dir)$   
7: if  $!dir$  then  
8:  $bitonicMerge(start, N - start, 9)$   
end if

10: end if

 $11:\ \text{end for}$ 

1)



#### **Experimental Result**



UT

#### **Experimental Result**



SGX index processing

NDCG results compare to Apace Lucene

- ► We adopt EigenFace
- Pre-processing and finding images are simple matrix operations
- Core problem to solve obliviously is eigenvector calculation
- ► We adopt Jacobi method of eigenvector calculation



### Eigenvector Calculation - Jacobi Method



We find the max off-diagonal element at  $A_{k,l}$ , then rotate column k and l. Repeat until A becomes diagonal. The diagonal values are eigen values.

### Oblivious Jacobi eigenvector calculation - Algorithm

$$\begin{split} E &\leftarrow identity(n) \\ \epsilon_1 &\leftarrow 10^{-12}, \ \epsilon_2 \leftarrow 10^{-36} \\ \text{for it} &= 0 \text{ to } n^2 \\ max, k, l &\leftarrow oMaxIndex(A) \\ \mathcal{C} &= max < \epsilon_1 \\ U &\leftarrow oColExtract(A, k) \\ V &\leftarrow oColExtract(A, l) \\ kk &\leftarrow oValueExtract(U, k) \\ ll &\leftarrow oValueExtract(V, l) \\ d &= ll - kk \\ m &= |max| < \epsilon_2 |d| \end{split}$$

$$p \leftarrow \frac{d}{2 \times max}$$

$$t_1 \leftarrow \frac{max}{d}$$

$$t_2 \leftarrow |\frac{1}{|p| + \sqrt{p^2 + 1}}|$$

$$t \leftarrow oSelect(t_1, t_2, m, 1)$$

$$c = \frac{1}{\sqrt{t^2 + 1}}$$

$$s = t \times c$$

$$\tau = \frac{s}{1 + c}$$

$$\mathcal{R} = s. \begin{bmatrix} -\tau & -1\\ 1 & -\tau \end{bmatrix}$$

$$\begin{bmatrix} U\\ V \end{bmatrix} + = \mathcal{R} \times \begin{bmatrix} U\\ V \end{bmatrix}$$



$$\begin{split} kk \leftarrow kk - t \times max \\ ll \leftarrow ll + t \times max \\ oValueAssign(U, k, kk) \\ oValueAssign(V, l, ll) \\ oValueAssign(U, l, 0) \\ oValueAssign(V, k, 0) \\ oCondColAssign(A, U, k, !C) \\ oCondColAssign(A, V, l, !C) \\ oCondRowAssign(A, V, l, !C) \\ oCondRowAssign$$

$$\begin{split} U &\leftarrow oColExtract(E,k) \\ V &\leftarrow oColExtract(E,l) \\ \begin{bmatrix} U \\ V \end{bmatrix} + = \mathcal{R} \times \begin{bmatrix} U \\ V \end{bmatrix} \\ oCondColAssign(E,U,k,!\mathcal{C}) \\ oCondColAssign(E,V,l,!\mathcal{C}) \\ \textbf{end for} \end{split}$$

 $V_i \leftarrow A_{i,i}, \forall i \in 0 \text{ to } n$  normalize(E)sort(E) based on V



### Experimental Result - Eigenvector calculation



Pre-processing overhead

Eigen calculation time

# Questions / Comments



